Способы осушки сжатого воздуха

Методы осушки воздуха

НПО «ЦВЭРТ» предлагает оптимальные решения по системам подготовки сжатого воздуха для получения воздуха с качеством, отвечающим требованиям стандартов ISO 8573.1 и ГОСТ 17433-80 по всем параметрам: частицам, влаге и маслу. Подготовка выполняется в двух основных направлениях: фильтрация и осушка. Фильтрация сжатого воздуха проводится с использованием: циклонов, сепараторов и фильтров. Осушка производится двумя основными способами: охлаждением или поглощением. Осушка охлаждением основана на зависимости влагосодержания (паросодержания) воздуха от его температуры. Для того чтобы избежать выделения влаги в процессе эксплуатации пневмопотребителей, сжатый воздух можно заблаговременно охладить до более низкой температуры, а всю выделившуюся влагу отделить. В современной практике распространено два варианта реализации этого метода: с использованием холода окружающей среды и с использованием холодильных установок.

Достаточно широкое применение находят установки осушки сжатого воздуха, в которых для охлаждения используют холод окружающей среды. Их можно подразделить на установки с использованием охлажденной воды (оборотной, артезианской и др.) и установки с использованием холода атмосферного воздуха. Осушка с использованием охлажденной воды производится в кожухотрубных и пластинчатых водо-воздушных теплообменниках. За счет теплообмена между воздухом и водой, температура сжатого воздуха снижается; происходит выпадение конденсата. Выпавший конденсат отсекается в сепараторах-влагоотделителях и удаляется конденсатоотводчиками. Наибольшее применение такие системы получили в виде концевых воздухоохладителей компрессорных станций. Характерным примером этого оборудования является концевой воздухоохладитель ВОК-79,2 в паре с влагоотделителем. Некоторые производители предлагают водо-воздушные охладители в комплексе с сепараторами и конденсатоотводчиками. Основным недостатком устройств этого типа является зависимость от постоянной подачи воды и ее качества.

Осушка воздуха с применением холода атмосферного воздуха производится в открытых воздухо-воздушных теплообменниках. Сжатый воздух подается в трубный пучок калорифера и обдувается холодным. Установки с естественным обдувом типа СОВа нашли применение в железнодорожном транспорте для обеспечения безаварийной работы пневматики железнодорожных стрелок. Эти устройства просты, не требуют подготовленного персонала и довольно дешевы. Однако, к недостаткам, ограничивающим их применение, следует отнести неэффективность работы установок в осенне-весенний и летний периоды года, отсутствие автоматизированного слива конденсата, возможность замерзания накопившегося в отстойниках аппарата конденсата в зимнее время и зависимость эффективности от ветровой нагрузки. Недостатки установок СОВа исключены в установках с искусственным обдувом атмосферным воздухом. Наиболее проработанными охладителями этого типа являются воздухоохладители и осушители типа ОСВ. Эти установки монтируется на открытых площадках, имеют защиту от замерзания и автоматизированный узел слива конденсата. Разработанный параметрический ряд установок осушки находит широкое применение в промышленности. Особенностью их работы является подогрев осушенного воздуха на обратном ходу, что позволяет осуществлять дополнительное охлаждение и обеспечивать незамерзаемость установки в зимний период.

Осушители сжатого воздуха рефрижераторного типа (рефрижераторные) представляют собой комплекс из двух теплообменников – теплообменника «воздух-воздух» и теплообменника «воздух-хладагент», в некоторых установках (как правило, при цикличном расходе) используется промежуточный хладоноситель. Сжатый воздух поступает в теплообменник «воздух-воздух», где предварительно охлаждается обратным потоком осушенного сжатого воздуха. После этого он проходит через теплообменник «воздух-хладагент», охлаждается до температуры +3. +5 °С. После охлаждения он направляется во встроенный влагоотделитель, очищается от выделившегося конденсата и подается во внешний контур теплообменника «воздух-воздух». Проходя по внешнему контуру осушенный, но холодный сжатый воздух подогревается, после чего направляется к потребителям. Осушители этого типа позволяют поддерживать точку росы под давлением порядка +3. +10 °С. Их существенным недостатком является сложность управления работой контура хладагента.

Осушители сжатого воздуха при помощи поглощающих веществ можно разделить на два способа: абсорбционный и адсорбционный.

Абсорбционный способ осушки сжатого воздуха состоит в пропускании его через вещества (абсорбенты), химически взаимодействующие с водяным паром. Наиболее известные абсорбционные системы основаны на использовании оросительных теплообменных аппаратов, в которых происходит поглощение паров влаги из сжатого воздуха жидким абсорбентом (диэтиленгликолем или триэтиленгликолем). Вследствие того, что одни абсорбенты не восстанавливаются и непригодны для повторного использования, а для восстановления других требуется специальная технология, промышленное применение абсорбентов для осушки ограничено. Наряду с этим не следует забывать о коррозионной агрессивности применяемых в настоящее время растворов, сложности регулирования работы этих установок при эксплуатации, уноса абсорбента сжатым воздухом, высоких энергозатрат. Из этого вытекает, что применение абсорбционных установок целесообразно на предприятиях имеющих возможность применения подобного оборудования (как правило, химические предприятия), обеспечивающего нормальный режим работы вышеуказанной системы.

Адсорбционный способ осушки сжатого воздуха основан на свойстве природных или искусственных материалов концентрировать на поверхности водяной пар. Для осушки сжатого воздуха наиболее широкое применение получили следующие адсорбенты: силикагели, активная окись алюминия и цеолиты. В основном они отличаются друг от друга влагоемкостью, ее зависимостью от температуры, глубиной осушки и механическими свойствами. Количество адсорбированного водяного пара возрастает с понижением температуры и увеличением концентрации в сжатом воздухе. Промышленные адсорбционные осушители представляют собой комплекс из двух и более параллельно подключенных к сети емкостей с адсорбентом, оснащенных вспомогательным оборудованием и арматурой. По способу регенерации адсорбента они разделяются на безнагревные (короткоцикловые) адсорбционные и адсорбционные осушители с горячей регенерацией.

Читайте также:  Способы улучшения структуры почв

Безнагревные установки осушки сжатого воздуха . Принцип действия основан на адсорбции водяных паров адсорбентом при прохождении через него потоков влажного воздуха. Регенерация адсорбента проводится путем продувки адсорбента потоком сухого воздуха под атмосферным давлением, который получается за счет дросселирования части осушенного сжатого воздуха до атмосферного давления. Длительность стадии адсорбции составляет от 1 до 10 минут. Производительность осушителей такого типа может составлять от 0,1 до 100 нм³/мин. Потери сжатого воздуха на установке обычно составляют 12–20% от установленной (номинальной) производительности. К достоинствам относится компактность оборудования и простота эксплуатации, к недостаткам — большие потери на регенерацию адсорбента и частые переключения арматуры. Такие осушители обычно применяются для обеспечения небольших локальных автоматизированных систем управления сжатым воздухом высокого качества.

Нагревные установки осушки сжатого воздуха . Принцип действия также основан на адсорбции водяных паров адсорбентом при прохождении через него потоков влажного воздуха. Регенерация адсорбента проводится путем его продувки горячим воздухом или другим горячим неагрессивным (инертным) газом (азотом, дымовыми газами). Для поддержания необходимой температуры регенерационного потока, в состав контура регенерации, как правило, включают подогреватель любого подходящего типа.

По организации регенерации осушители с горячей регенерацией адсорбента разделяются на использующие:

  • нагретый осушенный сжатый воздух;
  • теплоту компрессии сжатого воздуха;
  • горячий атмосферный воздух;
  • другой инертный газ.

Осушители, использующие нагретый осушенный сжатый воздух, являются наиболее простыми по техническому исполнению, но во время регенерации потребляют до 10–30 % осушенного сжатого воздуха. Примером является линейка типа ОВН, выпускаемых ОАО «Курганхиммаш». Осушители, использующие горячий атмосферный воздух, позволяют значительно снизить потребности осушителя при проведении стадий регенерации и охлаждения адсорбента. Вместо сжатого воздуха на стадии регенерации применяется горячий атмосферный воздух или любой другой горячий газ, инертный к материалам осушителя и поглотителю. Подогретый воздух подается в регенерируемый адсорбер при помощи воздуходувки или вакуумного насоса. В настоящее время этот тип установок является наиболее распространенным. Они полностью автоматизированы и надежны.

Осушители, использующие теплоту компрессии сжатого воздуха, являются самыми сложными по аппаратурному оформлению. Регенерация в них проводится путем продувки слоя адсорбента горячим сжатым воздухом, подающимся от компрессоров (как правило, безмаслянного сжатия), который затем охлаждается, сепарируется от капельной влаги и подается на осушку. К достоинствам этого типа можно отнести минимальные затраты на проведение регенерации среди всех видов адсорбционных осушителей. Явными недостатками являются потребность в высокой температуре, наиболее сложный режим работы, требование стабильно высокого разбора сжатого воздуха. Из-за столь жестких требований он используется довольно редко, даже несмотря на его выгодность с экономической точки зрения.

Производительность нагревных установок осушки обычно составляет от 10 до 500 нм³/мин, установки меньшей производительности оказываются экономически невыгодны, а большей — слишком велики для транспортировки. Осушители производительностью до 250 нм³/мин могут поставляться в полностью собранном виде, более крупные модели собираются непосредственно у Заказчика.

1 — Центробежный воздушный компрессор CENTAC.

2 — I ступень подготовки сжатого воздуха. Осушитель бесфреснового типа ОСВ.

3 — II ступень. Пылевой фильтр.

4 — II ступень. Осушитель адсорбционного типа DIB, DIL, HRE, HRS.

Источник

Типы осушителей сжатого воздуха. Как выбрать осушитель.

Принцип действия рефрижераторных, адсорбционных, мембранных осушителей.

При использовании компрессорного оборудования на производстве частой проблемой становится образование конденсата в пневмосистеме. В процессе сжатия температура воздуха значительно повышается, он становится насыщен водяным паром. При попадании в пневмосеть, горячий воздух соприкасается с холодными стенами трубопровода, вследствие чего происходит процесс конденсации. Избыток влаги является серьезной проблемой для любого предприятия: трубопроводы подвергаются коррозии, при минусовых температурах конденсат может замерзать, что препятствует нормальному прохождению воздуха, выводит из строя оборудование. Влага является основной причиной выхода из строя клапанных систем. Таким образом, вопрос осушки сжатого воздуха является одним из самых значимых на любом производстве. В зависимости от типа используемого оборудования, условий окружающей среды, где оно располагается и требований к сжатому воздуху существует несколько различных способов удаления конденсата. Наибольшее распространение получили: рефрижераторные (холодильные), адсорбционные и мембранные осушители. Компания ГК НТЦ предлагает осушители таких брендов, как EKOMAK(Турция) и Kraftmann (Германия).

Влажность воздуха. Основные понятия.

Самое общее определение можно сформулировать так: влажность — это мера, характеризующая содержание водяных паров в воздухе (или другом газе). На практике для количественного определения используют следующие понятия:

Абсолютная влажность — это величина, показывающая, какое количество паров воды содержится в заданном объеме воздуха. Это самое общее понятие, оно выражается в г/м3. При очень низкой влажности газа используется такой параметр как влагосодержание, единица измерения которого ppm (parts per million частей на миллион). Это абсолютная величина, которая характеризует число молекул воды на миллион молекул всей смеси. Ppm – более универсальная величина, она не зависит ни от температуры, ни от давления. Это и понятно количество молекул воды не может увеличиваться или уменьшаться при изменениях давления и температуры.

Относительная влажность — это понятие, используемое, как правило, в метеорологии. Оно определяется как отношение действительной влажности воздуха к его максимально возможной влажности. Другими словами, относительная влажность показывает, сколько еще влаги не хватает, чтобы при данных условиях окружающей среды началась конденсация. Данная величина характеризует степень насыщения воздуха водяным паром. Однако, относительная влажность неудобна для работы, так как она привязана к давлению, и к температуре газа. Более часто используется величина, называемая температурой точки росы.

Точка росы — это температура, при которой начинается процесс конденсации влаги. Практическое значение точки росы заключается в том, что оно показывает, какое максимальное количество влаги может содержаться в воздухе при указанной температуре. Действительно, фактическое количество воды, которое может удерживаться в постоянном объеме воздуха, зависит только от температуры. Понятие точки росы является наиболее удобным техническим параметром. Зная значение точки росы, мы можем утверждать, что количество влаги в заданном объеме воздуха не превысит определенного значения. Так, например, для точки росы +10°С количество влаги будет меньше или равно 9,51 г/ м 3 . Примерное максимальное количество влаги в воздухе в зависимости от температуры приведено в таблице:

Пример 1: Определение количества влаги в 1м 3 воздуха:

Условия: Температура +20 °С, относительная влажность 60%.

Относительная влажность = (А / В) х 100%,

Где: А — фактическое содержание воды; В — содержание воды в состоянии насыщения (точка росы).

Воспользовавшись данными таблицы и вышеприведенной формулой, определяем фактическое содержание воды в состоянии насыщения при +20°С, что соответствует 17 г/м3. Тогда искомое количество воды равно 17 г/м3 х 0,6 = 10,2 г/м3.

При сжатии воздуха его способность удерживать влагу в виде пара зависит от степени уменьшения объема. Следовательно, если температура остается постоянной или существенно не возрастет, вода начнет конденсироваться. Сколько останется влаги при сжатии воздуха в компрессоре и сколько ее выпадет в осадок в виде конденсата?

Пример 2: 10 м3 атмосферного воздуха при +20 °С и 65% относительной влажности сжимается до

избыточного давления 7 бар (8 бар абсолютного). Сколько воды выпадет в конденсат?

Из приведенной выше таблицы видно, что при температуре +20 °С в воздухе может содержаться максимум 17.09 г/м3, а в 10 м3 соответственно 17,09 г/м3 х10 м 3 = 170,9 г. При относительной влажности 65% воздух будет содержать170,9 г х 0,65 =111,1 г влаги. Объем сжатого воздуха при давлении 7 бар можно подсчитать, исходя из закона Бойля -Мариотта (При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно):

P1 x V1 = P2 x V2; V2 = (P1 x V1) / P2

где Р1 — атмосферное давление равное 1,013 бар;

V2 = ( 1,013бар х 10 м3 )/ (7+1,013)бар = 1,26 м3

Далее определяем, что 1,26 м3 воздуха при +20°С может удерживать максимум

17,09 г х 1,26 = 21,5 г влаги.

Количество конденсата равняется общему количеству воды, содержащемуся в атмосферном воздухе, минус количество воды, которое может вобрать в себя сжатый воздух, а именно: 111,1 г — 21,5 г = 89,6 г.

Таким образом, после сжатия почти 90 грамм воды выпадет в виде конденсата. Во избежание вредного воздействия, которое может оказать конденсат на состояние магистрали и работу пневматического оборудования, его необходимо удалить.

Отрицательные факторы присутствия влаги в пневмосистеме.

  • водный конденсат, смешиваясь с маслом, создает эмульсию, забивая полости пневматических систем, вызывая поломки;
  • конденсат вызывает коррозию линий подачи воздуха,оксидные обломки и пыль загрязняют пневматические устройства и приводят к их поломкам;
  • при отрицательной температуре конденсат может замерзать в трубопроводах и вызвать разрывы или значительно уменьшить проходимость;
  • при покраске капли жидкости приводят к неоднородности слоя краски;
  • при пневмотранспортировке порошкообразных материалов (в том числе в пескоструйных установках) избыточная влажность вызывает слипание и блокировку транспортируемого продукта;
  • чаще всего конденсат недопустим в фармацевтической, пищевой и электронной промышленности;

При планировании системы осушения для вашего производства можно воспользоваться следующими стандартами: Международный стандарт DIN ISO 8573-1: устанавливает 6 классов чистоты воздуха и соответствующее каждому классу предельно допустимое содержание различных видов примесей, в том числе и содержание влаги.

Максимальное остаточное содержание масла, мг/м3

Максимальное остаточное содержание твердых частиц

Максимальное остаточное содержание влаги

размер частиц, мкм

кол-во частиц, мг/м3

точка росы сжатого воздуха, °C

Существует аналогичный российский ГОСТ 17433-80. При выборе необходимого оборудования следует руководствоваться заданными для оборудования предельно допустимыми значениями содержания примесей и влажности.

Размер твердой частицы, мкм,

Содержание посторонних примесей, мг/м ГОСТ 17433-80 (СТ СЭВ 1704-79) Промышленная чистота. Сжатый воздух. Классы загрязненности (с Изменением N 1), не более

Вода (в жидком состоянии)

Масла (в жидком состоянии)

1. Содержание посторонних примесей указано для воздуха, приведенного к условиям: температура 293,15 К (20 °С) и давление 1013,25 гПа (760 мм рт.ст.).

2. Размер твердой частицы принимается по наибольшему измеренному значению.

Промышленное оборудование для осушения сжатого воздуха. Методы осушки.

Сжатие воздуха в компрессоре приводит к образованию конденсата, поэтому необходимо использовать дополнительный сепаратор для отделения влаги. Однако этого тоже недостаточно, поскольку сжатый воздух, расширяясь в оборудовании, охлаждается независимо от условий среды, что сопровождается дополнительным выделением конденсата. Поэтому и встает вопрос об использовании специальных осушителей, обеспечивающих необходимую точку росы. Например, если осушитель имеет точку росы +3 °С, то дополнительное охлаждение сжатого воздуха до температуры не ниже + 3 °С не приведет к образованию конденсата. Существуют различные методы осушки воздуха:

Рефрижераторные осушители. Осушка охлаждением.

Это наиболее широко применяемый в промышленности и наиболее экономичный тип осушителя. Стоимость такого осушителя в диапазоне производительностей от 3 до 20 м3/мин составляет примерно 15-20% от стоимости компрессорного оборудования. Сжатый воздух охлаждается хладагентом, а выпавший конденсат отводится. Воздух обычно охлаждается противоположным потоком хладагента в два этапа: предварительный – воздух — воздух; главный – воздух — хладагент. При этом достигается точка росы + 3°С. Конструктивная схема осушителя рефрижераторного типа:

Адсорбционные осушители.

Данные осушители состоят из двух колонн: одна колонна осушает воздух, вторая в этот момент регенерируется. Переключение между колоннами происходит либо по таймеру (через определенный промежуток времени воздух перестает поступать в первую колонну, начинает поступать во вторую; в первой колонне происходит процесс регенерации) либо по датчику точки росы (в тот момент, как точка росы начинает расти, происходит автоматическое переключение колонн). Второй вариант установок считается более надежным и энергоэффективным. В адсорбционном осушителе молекулы газа или пара притягиваются молекулярными силами адсорбента. Осушительным агентом является специальный гель (например, селикогель), который адсорбирует влагу. После каждого рабочего цикла требуется восстановление свойств агента, для этого используются два контейнера — один для осушки, другой для регенерации. Восстановление может быть холодным или горячим. Осушители с холодным восстановлением стоят дешевле, для регенерации используется сжатый воздух (т.е. потери до 15%). Осушитель с горячим восстановлением работает в обменном режиме, атмосферный воздух подогревается и используется для регенерации. В зависимости от используемого геля можно достичь точки росы до -70°С. Существуют адсорбционные осушители, которые в качестве осушительного агента используют молекулярные решетки кристаллизованные алюмосиликаты или цеолиты сферической или гранулированной формы). Как и все адсорбербенты, они имеют внутренние капилляры с большой площадью поверхности. Конструктивная схема адсорбционного сушителя типа:

Мембранные осушители.

Мембранный осушитель состоит из пучка полых волокон, которые открыты для водяных паров. Осушаемый воздух обтекает эти волокна. Осушка происходит за счет разницы давления между влажным воздухом внутри волокон и сухого воздуха, протекающего в обратном направлении. Для управления обратной продувкой не потребляется электрическая энергия, что позволяет использовать такие осушители во взрывоопасных средах. Одно из главных отличий от других осушителей заключается в следующем: мембранный осушитель в определенной пропорции уменьшает влажность воздуха, тогда как рефрижераторный и адсорбционные осушители понижают точку росы. Недостатком мембранных осушителей является их низкая пропускная способность и высокая стоимость.

Как выбрать осушитель сжатого воздуха.

При использовании на производстве поршневых компрессоров необходимо учитывать, что температура воздуха в конце сжатия у них выше, чем у винтовых компрессоров, таким образом, для эффективного удаления влаги требуется двухступенчатая система осушки. Если потребление воздуха происходит в непосредственной близости от установки (то есть длина пневмомагистрали невелика), для удаления излишней влаги можно использовать воздушный доохладитель в комплекте с циклонным сепаратором. Сжатый воздух попадает в доохладитель, где потоком холодного воздуха от вентилятора, его температура понижается на 15-20°С по сравнению с первоначальной. На данном этапе основная влага сконденсируется и удалится через клапан автоматического слива. Далее воздух поступает в циклонный влагосепаратор, где остатки конденсата удаляются под действием центробежных сил. Данный тип осушения является самым бюджетным и применяется в случае, если требуется точка росы не ниже 10°С. В случае, если температура окружающей среды в цехе, где установлено оборудование, может опускаться ниже 10°С или длина пневмомагистрали достаточно велика, вместо циклонного сепаратора необходимо использовать осушитель рефрижераторного типа. Принцип работы рефрижераторного осушителя основан на взаимодействии сжатого воздуха, поступающего из компрессора с хладагентом, находящимся в осушителе. При испарении хладагента происходит понижение температуры сжатого воздуха до 3°С, далее воздух нагревается обратным потоком до температуры на 10-15°С ниже температуры окружающей среды. Таким образом, если температура в компрессорном цехе не будет опускаться ниже 3°С, конденсат образовываться не будет. При использовании винтового компрессора, для достижения точки росы +3°С достаточно использовать только рефрижераторный осушитель, так как концевой доохладитель входит в состав винтовой компрессорной установки. Если в помещении, где находится оборудование, температура опускается до 0°С, либо трубопровод проходит по улице, для эффективного удаления конденсата необходимо использовать адсорбционные осушители. Принцип работы данного типа осушителей основан на поглощении влаги специальным веществом – адсорбентом, находящимся в двух колоннах. Адсорбционные осушители выпускаются на два варианта точки росы: -40°С (в качестве адсорбента используется силикагель) и -70°С (в качестве адсорбента используется молекулярное сито). Установки с точкой росы -40°С чаще всего используются в промышленности, с точкой росы -70°С — в медицине и пищевом производстве. Сжатый воздух, насыщенный влагой, поступает в колонну с адсорбентом, где поглощается конденсат, а сухой воздух далее поступает в пневмосеть.

Компания ГК НТЦ является официальным дистрибьютором ведущих мировых производителей компрессорного оборудования и оборудования воздухоподготовки. Наши сотрудники всегда помогут Вам с подбором оборудования, проконсультируют по вопросам эксплуатации. Технические специалисты компании на высоком уровне выполнят монтаж и техническое обслуживание компрессорного оборудования. С широким ассортиментом осушителей, техническими характеристиками Вы можете подробнее ознакомиться в разделе нашего сайта:

Источник

Читайте также:  Базисный способ вычисления формула
Оцените статью
Разные способы