Способы организации ввода вывода

Способы организации ввода-вывода

Методы управления вводом-выводом

Способы организации ввода-вывода

В компьютерах находят применение три способа организации ввода-вывода:

программно управляемый ввод-вывод;

ввод-вывод по прерываниям;

прямой доступ к оперативной памяти.

При программно управляемом вводе-выводе все связанные с этим действия происходят по инициативе процессора и под его полным контролем. Процессор выполняет программу, которая обеспечивает прямое управление процессом ввода-вывода, включая проверку состояния устройства, выдачу команд ввода-вывода. Выдав в контроллер ПУ команду, процессор должен ожидать заверше­ния ее выполнения, и, поскольку он работает быстрее, чем ПУ, это приводит к потере времени.

Ввод-вывод по прерываниям во многом совпадает с программно управляемым методом. Отличие состоит в том, что после выдачи команды ввода-вывода процессор не должен циклически опрашивать контроллер ПУ для выяснения состояния устройства. Вме­сто этого процессор может продолжать выполнение других команд до тех пор, пока не получит запрос прерывания от контроллера ПУ, извещающий о завершении выполнения ранее выданной команды ввода-вывода. Как и при программно управляемом вводе-выводе, процессор отвечает за извлечение данных из оперативной памяти (при выводе) и запись данных в оперативную память (при вводе).

Повышение, как скорости ввода-вывода,так и эффективности использования процессора, обеспечивает третий способ ввода-вывода — прямой доступ к оперативной памяти (ПДП). В этом режиме оперативная память и контроллер ПУ обмениваются информацией на­прямую, минуя процессор.

Источник

Программно управляемый ввод-вывод

Глава 25. Методы управления вводом-выводом

Способы организации ввода-вывода

В компьютерах находят применение три способа организации ввода-вывода:

программно управляемый ввод-вывод;

ввод-вывод по прерываниям;

прямой доступ к оперативной памяти.

При программно управляемом вводе-выводе все связанные с этим действия происходят по инициативе процессора и под его полным контролем. Процессор выполняет программу, которая обеспечивает прямое управление процессом ввода-вывода, включая проверку состояния устройства, выдачу команд ввода-вывода. Выдав в контроллер ПУ команду, процессор должен ожидать заверше­ния ее выполнения, и, поскольку он работает быстрее, чем ПУ, это приводит к потере времени.

Ввод-вывод по прерываниям во многом совпадает с программно управляемым методом. Отличие состоит в том, что после выдачи команды ввода-вывода процессор не должен циклически опрашивать контроллер ПУ для выяснения состояния устройства. Вме­сто этого процессор может продолжать выполнение других команд до тех пор, пока не получит запрос прерывания от контроллера ПУ, извещающий о завершении выполнения ранее выданной команды ввода-вывода. Как и при программно управляемом вводе-выводе, процессор отвечает за извлечение данных из оперативной памяти (при выводе) и запись данных в оперативную память (при вводе).

Повышение, как скорости ввода-вывода,так и эффективности использования процессора, обеспечивает третий способ ввода-вывода — прямой доступ к оперативной памяти (ПДП). В этом режиме оперативная память и контроллер ПУ обмениваются информацией на­прямую, минуя процессор.

Программно управляемый ввод-вывод

Наиболее простым методом управления вводом-выводом является небуферированный программно управляемый ввод-вывод.В этом режимев каждом циклеобмена передается только одна порция данных. Это может быть 1, 2, 4 байта. Здесь ввод-вывод происходит под полным контролем процессора и реа­лизуется специальной процедурой ввода-вывода (драйвером периферийного устройства). В этой процедуре процессор, например, с помощью команды ввода-вывода сообщает контроллеру ПУ, а через него и устройству о предстоящей операции. Адрес контроллера ПУ, к которому производит­ся обращение, указывается в адресной части команды ввода или вывода. Контроллер ПУ исполняет затребованное действие, после чего устанавливает в единицу соответ­ствующий разряд в своем регистре состояния. Ничего другого, чтобы уведомить процессор, контроллер ПУ не предпринимает. Следовательно, для определения момента за­вершения операции или пересылки очередного элемента блока данных про­цессор должен периодически опрашивать и анализировать содержимое регис­тра состояния в контроллере ПУ.

Читайте также:  Постоянный реквизит это реквизит наносимый типографским способом при изготовлении бланка документа

В процедуре программно управляемого ввода блока данных с уст­ройства ввода данные читаются пословно. Для каждого чи­таемого слова процессор должен оставаться в цикле проверки, пока не определит, что слово находится в регистре данных контроллера ПУ, то есть доступно для считывания.

Алгоритм выполнения обмена под управлением программы приведен на рис. 25.1.

Рис. 25.1. Алгоритм выполнения обмена под управлением программы

Процедура начинается с выдачи процессором команды ввода, в которой указан адрес конкретного контроллера ПУ и конкретного ПУ. Существуют четыре типа команд ввода-вывода, которые может получить контроллер ПУ:

Команды управления используются для активизации ПУ и указания требуемой операции. Например, в устройство памяти на магнитном диске может быть выдана команда «Поиск дорожки». Для каждого типа ПУ харак­терны специфичные для него команды управления.

Команда проверки применяется для проверки различных ситуаций, возникаю­щих в ПУ в процессе ввода-вывода. С помощью таких команд процессор спосо­бен выяснить, включено ли ПУ, готово лионо к работе, завершена ли последняя операция ввода-вывода и не возникли ли в ходе ее выполнения какие-либо ошибки. Действие команды сводится к установке или сбросу соответствующих разрядов регистра состояния контроллера ПУ.

Команда чтения побуждает контроллер ПУ получить элемент данных из ПУ и занести его в буфер (регистр) данных. Процессор может получить этот элемент данных, запросив контроллер ПУ поместить его на шины данных внешнего интерфейса.

Команда записи заставляет контроллер ПУ принять элемент данных (байт, слово илидвойноеслово)с шин данных внешнего интерфейса, записать его в буфер данных и затем переслать его в ПУ.

Если к контроллеру ПУ подключено несколько ПУ, то в процедуре ввода-вывода нужно производить циклический опрос всех устройств, с которыми в данный момент производятся операции ввода-вывода.

Из приведенного описания явно виден основной недостаток программно управляемого ввода-вывода — неэффективное использование процессора из-за ожидания готовности очередной порции информации. В течение всего времени ожидания готовности ПУ процессор не выполняет никаких иных по­лезных действий. Кроме того, пересылка даже одной порции данных (например, слова) тре­бует выполнения нескольких команд. Процессор должен тратить время на анализ разрядов состояния ПУ, запись в контроллер ПУ разрядов управления, чтение или запись данных со скоростью, определяемой внешним устройством. Все это также отрицательно ска­зывается на эффективности ввода-вывода.

Главным аргументом в пользу программно управляемого ввода-вывода явля­ется простота контроллера ПУ, поскольку основные функции по управлению вводом-выводом берет на себя процессор. При одновременной работе с несколькими ПУ приоритет устройств легко изменить программными средствами (последовательностью опроса). Наконец, подключение к подсистеме ввода-вывода новых внешних устройств или отключение ранее подключенных также реализуется без особых сложностей.

Источник

Основные методы ввода-вывода (I/O)

Авторизуйтесь

Основные методы ввода-вывода (I/O)

Начинающему разработчику зачастую сложно разобраться в средствах ввода-вывода (I/O), поскольку присутствует небольшая путаница в определении различий этих способов. В данном материале попробуем заполнить этот пробел и разобраться в классификации основных типов ввода-вывода.

I/O в аппаратном обеспечении

В современных операционных системах средства ввода-вывода представляют собой способы взаимодействия между обработчиком информации и внешним миром. Сюда можно отнести чтение или запись файлов на жёсткий диск или SSD, отправку и получение данных по сети, отображение информации на мониторе и получение ввода с мыши и клавиатуры.

Читайте также:  Как добывают бурый уголь открытым способом

Способы взаимодействия современных ОС с периферийными устройствами зависят от типа устройства, возможностей прошивки и аппаратного обеспечения. Можно считать, что периферия может обрабатывать несколько запросов одновременно. То есть время последовательного взаимодействия прошло. В этом смысле все взаимодействия устройств ввода-вывода с процессором асинхронны и находятся на стороне аппаратного обеспечения.

Такой асинхронный механизм называется аппаратным прерыванием. В простом случае, процессор отправляет запрос к внешнему устройству и начинает бесконечный цикл, в котором он каждый раз запрашивает у периферии, готовы ли данные, которые процессор мог бы считать, и ждёт в цикле, пока периферия не выдаст ему эти данные. Этот метод ввода-вывода называется методом опроса поскольку процессор должен постоянно проверять состояние периферии.

3–5 декабря, Онлайн, Беcплатно

На самом деле, на современном оборудовании процессор просит периферию выполнить действие и забывает о нём, продолжая обрабатывать другие инструкции. Как только устройство завершит свою работу, оно сообщает об этом процессору, вызывая прерывание. Это происходит на уровне аппаратного обеспечения, и при этом процессору никогда не приходится ожидать или опрашивать периферию, что освобождает его для другой работы, пока периферия сама не сообщит о своей готовности.

I/O в программном обеспечении

В среде программного обеспечения существует большое количество видов ввода и вывода: блокирующий, неблокирующий, мультиплексированный и асинхронный. Давайте рассмотрим их по очереди.

Блокирующий метод

Помните, что любая пользовательская программа запускается внутри процесса, а код выполняется в контексте потока? Предположим, вы пишете программу, которой нужно читать информацию из файла. С блокирующим вводом-выводом вы просите ОС «усыпить» ваш поток и «разбудить» его только после того, как данные из файла будут доступны для чтения.

То есть блокирующий ввод-вывод называется так, потому что поток, который его использует, блокируется и переходит в режим ожидания, пока ввод-вывод не будет завершён.

Неблокирующий метод

Проблема метода блокировки заключается в том, что поток будет спать, пока ввод-вывод не завершится. Поток не сможет выполнять никаких других задач, кроме ожидания завершения ввода-вывода. Иногда вашей программе больше и не надо ничего делать. В противном случае во время ожидания ввода-вывода было бы полезно выполнять другие задачи.

Один из способов осуществить это — использовать неблокирующий ввод-вывод. Его идея заключается в том, что когда программа делает вызов на чтение файла, ОС не будет блокировать поток, а просто вернёт ей либо готовые данные, либо информацию о том, что ввод-вывод ещё не закончен. Это не заблокирует поток, но программе придётся позже проверять, завершён ли ввод-вывод. Это означает, что ПО может по-разному реагировать в зависимости от того, завершён ли ввод-вывод и выполнять другие задачи. Когда же программе снова понадобится ввод-вывод, она сможет повторно попробовать прочесть содержимое файла, и если ввод-вывод завершён, то получит содержимое файла. В противном случае ПО снова получит сообщение о том, что операция ещё не завершена и сможет заняться другими задачами.

Мультеплексированный метод

Проблема с неблокирующим вводом-выводом в том, что с ним не удобно работать, если задачи, которые выполняет программа, ожидая ввода-вывода, сами из себя представляют другой ввод-вывод.

Хорошо, если ПО просит ОС прочитать содержимое из файла А, после чего выполняет какие-нибудь сложные вычисления. Затем проверяет, завершилось ли чтение файла А, и если да, то просто продолжает ту работу, для которой нужно было содержимое файла, а иначе снова выполняет некоторое количество сложных вычислений и так далее.

Но что, если программе не нужно выполнять сложные вычисления? Ей просто нужно прочесть файл A и одновременно файл B. Пока ПО ожидает завершения обработки файла А, оно делает неблокирующий вызов чтения содержимого файла В. Во время ожидания обработки программе больше нечего делать, потому она входит в бесконечный цикл опроса, проверяя, готово ли A и готово ли B, снова и снова. Это либо нагрузит процессор проверками состояния ваших неблокирующих вызовов, либо вам придётся вручную добавить какое-то произвольное время, которое ваш поток будет «спать», а значит, программа немного позже заметит, что ввод-вывод готов, что отрицательно скажется на пропускной способности ПО.

Читайте также:  Все способы наростить волосы

Во избежание этого можно использовать мультиплексированный ввод-вывод. Он тоже блокирует поток на операциях ввода-вывода, но вместо того, чтобы производить блокировку по очереди, вы можете запланировать все операции ввода-вывода, которые вам нужно сделать, и блокировать их все. Операционная система разбудит поток, когда какая-нибудь из операций завершится. В некоторых реализациях мультиплексированного ввода-вывода можно даже точно указать, что вы хотите, чтобы поток разбудили, только когда заданный набор операций ввода-вывода будет завершён, например, когда файлы A и C, или файлы B и D будут готовы.

Таким образом ПО делает неблокирующий вызов чтения файла A, потом неблокирующий вызов чтения файла B, и наконец говорит ОС: усыпи мой поток, и разбуди его, когда A и B будут оба готовы, или когда один из них будет готов.

Асинхронный метод

Проблема мультиплексированного ввода-вывода в том, что поток всё-таки спит, пока ввод-вывод не будет готов для обработки. Для многих программ это подходит, поскольку у них нет других задач, пока они ждут завершения операций ввода-вывода. Но иногда у них есть и другие задачи.

Например, ПО вычисляет цифры числа π и одновременно суммирует значения из нескольких файлов. Вам хотелось бы запланировать все операции чтения файлов, пока программа ждёт их выполнения, вычислять цифры числа π. Когда какой-нибудь из файлов будет прочитан, ПО прибавит записанное в нём значение и продолжит вычислять цифры числа π дальше, пока ещё один файл не будет прочитан.

Чтобы это работало, нужно, чтобы ваше вычисление цифр числа π могло быть прервано вводом-выводом, когда он завершается. Это можно сделать с помощью обратных вызовов, связанных с событиями. Вызов на чтение принимает функцию обратного вызова и возвращается немедленно. Когда ввод-вывод завершается, операционная система остановит ваш поток и выполнит обратный вызов. Когда обратный вызов завершится, система возобновит работу вашего потока.

Многопоточность или однопоточность?

Вы, наверно, заметили, что все вышеописанные способы ввода-вывода работают в рамках одного потока, главного потока вашего приложения. На самом деле, для выполнения ввода-вывода не требуется отдельный поток, поскольку, как вы видели в начале статьи, вся периферия выполняет ввод-вывод асинхронно. Поэтому и возможно делать блокирующий, неблокирующий, мультиплексированный и асинхронный ввод-вывод в однопоточной модели и одновременный ввод-вывод может работать без поддержки многопоточности.

Но обработка результатов операций ввода-вывода может быть и многопоточной. Это позволяет программе делать одновременные вычисления поверх одновременного ввода-вывода. Так что, ничто не мешает вам совмещать многопоточность и эти механизмы ввода-вывода.

В самом деле, есть пятый популярный метод ввода-вывода, который требует многопоточности. Его часто путают с неблокирующим или асинхронным, поскольку он похож по интерфейсу на те два. Он работает просто: он использует блокирующий ввод-вывод, но каждый блокирующий вызов делается в отдельном потоке. В зависимости от реализации, вызов либо принимает функцию обратного вызова, либо использует модель опроса, как если он возвращает Future .

Источник

Оцените статью
Разные способы