- Определение устойчивости систем автоматического управления промышленными роботами
- Введение
- Постановка задачи
- Теория просто и кратко
- САУ электроприводом манипулятора промышленного робота (МПР)
- Решение на Python
- САУ сварочного робота
- Решение на Python
- Выводы
- 3.4.Запасы устойчивости
- 3.5.Оценка устойчивости по логарифмическим амплитудно- и фазо-частотным характеристикам
- Способы определения запаса устойчивости сау
Определение устойчивости систем автоматического управления промышленными роботами
Введение
Необходимым условием работоспособности системы автоматического управления (САУ), является её устойчивость. Под устойчивостью принято понимать свойство системы восстанавливать состояние равновесия, из которого она была выведена под влиянием возмущающих факторов после прекращения их воздействия [1].
Постановка задачи
Теория просто и кратко
Анализ устойчивости системы по методу Михайлова сводится к построению характеристического многочлена замкнутой системы (знаменатель передаточной функции), комплексной частотной функции (характеристического вектора):
(1)
где и
– соответственно вещественная и мнимая части знаменателя передаточной функции, по виду которой можно судить об устойчивости системы.
Замкнутая САУ устойчива, если комплексная частотная функция , начинаясь на
стрелки начало координат, проходя последовательно n квадрантов, где n – порядок характеристического уравнения системы, т. е.
(2)
Рисунок 1. Амплитудно-фазовые характеристики (годографы) критерия Михайлова: а) – устойчивой системы; б) – неустойчивой системы (1, 2) и системы на границе устойчивости (3)
САУ электроприводом манипулятора промышленного робота (МПР)
Рисунок 2 – Структурная схема САУ электроприводом МПР
Передаточная функция данной САУ имеет следующее выражение [2]:
(3)
где kу – коэффициент усиления усилителя, kм – коэффициент пропорциональности частоты вращения двигателя величине напряжения на якоре, Tу – электромагнитная постоянная времени усилителя, Tм – электромеханическая постоянная времени двигателя с учётом инерции нагрузки (по своим динамическим характеристикам двигатель представляет собой передаточную функцию последовательно соединённых инерционного и интегрирующего звеньев), kдс – коэффициент пропорциональности между входной и выходной величинами датчика скорости, K – коэффициент усиления главной цепи: .
Численные значения в выражение передаточной функции следующие:
K = 100 град / (В∙с); kдс = 0,01 В / (град∙с); Tу = 0,01 с; Tм = 0,1с.
Далее запишем характеристический многочлен замкнутой системы
заменив s на
:
(4)
Решение на Python
Здесь следует отметить, что подобные задачи на Python ещё никто не решал, во всяком случае я не нашёл. Это было связано с ограниченными возможностями работы с комплексными числами. С появлением SymPy можно сделать следующее:
Где I мнимая единица, w- круговая частота, T1= Tу = 0.01 ,T2= Tм = 0.1
Получим развёрнутое выражение для многочлена:
Характеристический многочлен замкнутой системы –
-I*T1*T2*w**3 — T1*w**2 — T2*w**2 + I*w + 1
Сразу видим, что многочлен третьей степени. Теперь получим мнимую и действительную части в символьном отображении:
Действительная часть Re= -T1*w**2 — T2*w**2 + 1
Мнимая часть Im= -T1*T2*w**3 + w
Сразу видим вторую степень действительной части и третью мнимой. Подготовим данные для построения годографа Михайлова. Введём численные значения для T1 и T2, и будем менять частоту от 0 до 100 с шагом 0.1 и построим график:
Из графика не видно, то годограф начинается на действительной положительной оси. Нужно изменить масштабы осей. Приведу полный листинг программы:
Характеристический многочлен замкнутой системы — -I*T1*T2*w**3 — T1*w**2 — T2*w**2 + I*w + 1
Действительная часть Re= -T1*w**2 — T2*w**2 + 1
Мнимая часть Im= -T1*T2*w**3 + w
Теперь уже видно, что годограф начинается на действительной положительной оси. САУ устойчива, n=3, годограф совпадает с приведённым на первом рисунке.
Дополнительно убедится в том, что годограф начинается на действительной оси можно дополнив программу следующим кодом для w=0:
Начальная точка М(1,0)
САУ сварочного робота
Рисунок 3. Структурная схема САУ позиционированием НСУ
Характеристическое уравнение данной САУ будет иметь вид [1]:
где K – варьируемый коэффициент усиления системы, a – определённая положительная константа. Численные значения: K = 40; a = 0,525.
Далее путём замены s на , получим функцию Михайлова:
(5)
Решение на Python
Характеристический многочлен замкнутой системы — w**4 — 6*I*w**3 — 11*w**2 + 46*I*w + 21
Начальная точка М(21,0)
Действительная часть Re= w**4 — 11*w**2 + 21
Мнимая часть Im= -6*w**3 + 46*w
Построенный годограф Михайлова, начинаясь на вещественной положительной оси (М (21,0)), огибает в положительном направлении начало координат, проходя последовательно четыре квадранта, что соответствует порядку характеристического уравнения. Значит, данная САУ позиционированием НСУ – устойчива.
Выводы
При помощи модуля SymPy Python получен простой и наглядный инструмент для решения задач расчёта устойчивости систем автоматического управления, что является обязательным условием работоспособности любого промышленного робота и манипулятора.
Источник
3.4.Запасы устойчивости
Впроцессе эксплуатации САУ ее параметры (коэффициенты усиления, постоянные времени) из-за изменения внешних условий, колебаний напряжений источников энергии и других причин отличаются от расчетных значений. Если не принять определенных мер, то исходная устойчивая система может стать неустойчивой. Для исключения этого явления при проектировании следует обеспечить определенныезапасы устойчивости системы, которые характеризуют близость годографа амплитудно-фазовой характеристики разомкнутой системы W(jω) к точке с координатами (-1, j0).
Различают запас устойчивости по фазе и усилению. Запасы устойчивости определяются на двух частотах: частоте среза ωс и критической частоте ωкр . На частоте среза амплитудно-частотная характеристика разомкнутой системы |W(jω)| равна единице, а на критической частоте фазо-частотная характеристика этой системы φ(ω) принимает значение, равное -π.
Запас устойчивости по фазе Δφ показывает, насколько фазо-частотная характеристика разомкнутой системы на частоте среза ωс отличается от -π (рис. 3.9):
Δφ = π – .
Величина запаса устойчивости по усилению может быть определена на частоте ωкр, как разность:
= 1 – |W(jωкр)|,
либо как отношение
Во втором случае величина запаса устойчивости по усилению определяет, во сколько раз необходимо увеличить коэффициент усиления, чтобы система оказалась на границе устойчивости.
Системы, годографы W(jω) которых пересекают вещественную ось только справа от точки с координатами (-1, j0) (рис. 3.10, а), называют абсолютно устойчивыми. В таких системах неустойчивость может наступить только при увеличении коэффициента усиления.
Если годограф частотной характеристики W(jω) разомкнутой системы пересекает вещественную ось и слева от точки с координатами (-1, j0), то систему называют условно устойчивой (рис. 3.10, б). Неустойчивой такая система может быть как при увеличении, так и при уменьшении коэффициента усиления.
Для нормальной работы САУ необходимо, чтобы запас устойчивости по усилению α был не менее двух, а запас устойчивости по фазе – от 0,5 до 1 рад.
3.5.Оценка устойчивости по логарифмическим амплитудно- и фазо-частотным характеристикам
Оценку устойчивости замкнутой САУ можно осуществлять по логарифмическим амплитудно- и фазо-частотным характеристикам системы в разомкнутом состоянии: L(ω) и φ(ω). В том случае, когда годограф W(jω) не имеет точек пересечения с вещественной осью слева от точки с координатами (-1, j0), для устойчивости замкнутой системы необходимо и достаточно, чтобы выполнялось условие
Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.
Источник
Способы определения запаса устойчивости сау
10.1. Понятие структурной устойчивости. АФЧХ астатических САУ
САУ может быть неустойчивой по двум причинам: неподходящий состав динамических звеньев и неподходящие значения параметров звеньев.
САУ, неустойчивые по первой причине называются структурно неустойчивыми . Это означает, что изменением параметров САУ нельзя добиться ее устойчивости, нужно менять ее структуру.
Например, если САУ состоит из любого количества инерционных и колебательных звеньев, она имеет вид, показанный на рис.72
.
При увеличении коэффициента усиления САУ K каждая точка ее АФЧХ удаляется от начала координат, пока при некотором значении K крит АФЧХ не пересечет точку ( -1, j0 ). При дальнейшем увеличении K , САУ будет неустойчива. И наоборот, при уменьшении K такую САУ в принципе возможно сделать устойчивой, поэтому ее называют структурно устойчивой .
Если САУ астатическая, то при ее размыкании характеристическое уравнение можно представить в виде: pD 1 p(p) = 0 , где n — порядок астатизма , равный количеству последовательно включенных интеграторов. Это уравнение имеет нулевые корни, поэтому при
0 , АФЧХ стремится к
(рис.71в и 71г). Например, пусть W р (p) =
, здесь
= 1 , тогда АФЧХ разомкнутой САУ:
W(j) =
= P(
) + jQ(
).
Так как порядок знаменателя больше порядка числителя, то при
0 имеем P(
)
—
, Q(
)
-j
. Подобная АФЧХ представлена на рис.73.
Так как АФЧХ терпит разрыв, трудно сказать, охватывает ли она точку (-1,j0) . В этом случае пользуются следующим приемом: если АФЧХ терпит разрыв, уходя в бесконечность при
0 , ее дополняют мысленно полуокружностью бесконечного радиуса, начинающейся на положительной вещественной полуоси и продолжающейся до АФЧХ в отрицательном направлении. После этого можно применить критерий Найквиста. Как видно из рисунка, САУ, имеющая одно интегрирующее звено, является структурно устойчивой.
Если САУ имеет два интегрирующих звена (порядок астатизма = 2 ), ее АФЧХ уходит в бесконечность во втором квадранте (рис.74).
Например, пусть W р (p) = , тогда АФЧХ САУ:
W(j) =
= P(
) + jQ(
).
При
0 имеем P(
)
—
, Q(
)
+ j
. Такая САУ не будет устойчива ни при каких значениях параметров, то есть она структурно неустойчива.
Структурно неустойчивую САУ можно сделать устойчивой, включив в нее корректирующие звенья (например, дифференцирующие или форсирующие) или изменив структуру САУ, например, с помощью местных обратных связей.
10.2. Понятие запаса устойчивости
В условиях эксплуатации параметры системы по тем или иным причинам могут меняться в определенных пределах (старение, температурные колебания и т.п.). Эти колебания параметров могут привести к потере устойчивости системы, если она работает вблизи границы устойчивости. Поэтому стремятся спроектировать САУ так, чтобы она работала вдали от границы устойчивости. Степень этого удаления называют запасом устойчивости .
Согласно критерия Найквиста, чем дальше АФЧХ от критической точки (-1, j0) , тем больше запас устойчивости. Различают запасы устойчивости по модулю и по фазе.
Запас устойчивости по модулю характеризует удаление годографа АФЧХ разомкнутой САУ от критической точки в направлении вещественной оси и определяется расстоянием h от критической точки до точки пересечения годографом оси абсцисс (рис.75).
Запас устойчивости по фазе характеризует удаление годографа от критической точки по дуге окружности единичного радиуса и определяется углом между отрицательным направлением вещественной полуоси и лучом, проведенным из начала координат в точку пересечения годографа с единичной окружностью.
Как уже отмечалось, с ростом коэффициента передачи разомкнутой САУ растет модуль каждой точки АФЧХ и при некотором значении K = K кр АФЧХ пройдет через критическую точку (рис.76) и попадет на границу устойчивости, а при K > K кр замкнутая САУ станет неустойчива. Однако в случае “клювообразных” АФЧХ (получаются из-за наличия внутренних обратных связей) не только увеличение, но и уменьшение K может привести к потере устойчивости замкнутых САУ (рис.77). В этом случае запас устойчивости определяется двумя отрезками h 1 и h 2 , заключенными между критической точкой и АФЧХ.
Обычно при создании САУ задаются требуемыми запасами устойчивости h и , за пределы которых она выходить не должна. Эти пределы выставляются в виде сектора, вычерчиваемого вокруг критической точки, в который АФЧХ разомкнутой САУ входить не должна (рис.78).
10.3. Анализ устойчивости по ЛЧХ
Оценку устойчивости по критерию Найквиста удобнее производить по ЛЧХ разомкнутой САУ. Очевидно, что каждой точке АФЧХ будут соответствовать определенные точки ЛАЧХ и ЛФЧХ.
Пусть известны частотные характеристики двух разомкнутых САУ (1 и 2), отличающихся друг от друга только коэффициентом передачи K 1 2 . Пусть первая САУ устойчива в замкнутом состоянии, вторая нет.(рис.79).
Если W 1 (p) — передаточная функция первой САУ, то передаточная функция второй САУ W 2 (p) = KW 1 (p) , где K = K 2 /K 1 . Вторую САУ можно представить последовательной цепочкой из двух звеньев с передаточными функциями K (безынерционное звено) и W 1 (p) , поэтому результирующие ЛЧХ строятся как сумма ЛЧХ каждого из звеньев.
Поэтому ЛАЧХ второй САУ: L 2 () = 20lgK + L 1 (
) ,
а ЛФЧХ: 2 (
) =
1 (
) .
Пересечениям АФЧХ вещественной оси соответствует значение фазы = —
. Это соответствует точке пересечения ЛФЧХ
= —
линии координатной сетки. При этом, как видно на АФЧХ, амплитуды A 1 (
) 2 (
) > 1 , что соответствует на САЧХ значениям L 1 (
) = 20lgA 1 (
) 2 (
) > 0 .
Сравнивая АФЧХ и ЛФЧХ можно заключить, что система в замкнутом состоянии будет устойчива, если значению ЛФЧХ = —
будут соответствовать отрицательные значения ЛАЧХ и наоборот. Запасам устойчивости по модулю h 1 и h 2 , определенным по АФЧХ соответствуют расстояния от оси абсцисс до ЛАЧХ в точках, где
= —
, но в логарифмическом масштабе.
Особыми точками являются точки пересечения АФЧХ с единичной окружностью. Частоты c1 и
c2 , при которых это происходит называют частотами среза .
В точках пересечения A() = 1 = > L(
) = 0 — ЛАЧХ пересекает горизонтальную ось. Если при частоте среза фаза АФЧХ
c1 > —
(рис.79а кривая 1), то замкнутая САУ устойчива. На рис.79б это выглядит так, что пересечению ЛАЧХ горизонтальной оси соответствует точка ЛФЧХ, расположенная выше линии
= —
. И наоборот для неустойчивой замкнутой САУ (рис.79а кривая 2)
c2 —
, поэтому при
=
c2 ЛФЧХ проходит ниже линии
= —
. Угол
1 =
c1 -(-
) является запасом устойчивости по фазе. Этот угол соответствует расстоянию от линии
= —
до ЛФЧХ.
Исходя из сказанного, критерий устойчивости Наквиста по логарифмическим ЧХ, в случаях, когда АФЧХ только один раз пересекает отрезок вещественной оси [-;-1] , можно сформулировать так: для того, чтобы замкнутая САУ была устойчива необходимо и достаточно, чтобы частота, при которой ЛФЧХ пересекает линию
= —
, была больше частоты среза.
Если АФЧХ разомкнутой САУ имеет сложный вид (рис.80), то ЛФЧХ может несколько раз пересекать линию = —
. В этом случае применение критерия Найквиста несколько усложняется. Однако во многих случаях данной формулировки критерия Найквиста оказывается достаточно.
- Какие САУ считаются структурно устойчивыми и структурно неустойчивыми?
- В каком квадранте уходит в бесконечность АФЧХ разомкнутой САУ если порядок астатизма равен трем? Является ли такая САУ структурно устойчивой в замкнутом состоянии:
- Как сделать устойчивой структурно неустойчивую САУ?
- Что называется запасом устойчивости по модулю?
- Что называется запасом устойчивости по фазе?
- В чем особенность определения запасов устойчивости для клювообразных САУ?
- Как влияет коэффициент усиления САУ на запасы устойчивости?
- Чему соответствуют на АФЧХ пересечение ЛАЧХ оси w?
- Чему соответствуют на АФЧХ пересечение ЛФЧХ значения j = -p?
- Что называется частотой среза?
- Сформулируйте критерий Найквиста для логарифмических характеристик.
- В чем особенность логарифмических характеристик, если АФЧХ имеет клювообразный характер?
Источник