Определение первичной структуры белков
Определению первичной структуры предшествует денатурация и разрыв поперечных дисульфидных связей в белке. Это достигается посредством избытка меркаптоэтанола.
Цистин превращается в два остатка цистеина, которые затем блокируют избытком иодуксусной кислоты, чтобы предотвратить обратное образование связей — S-S-.
Расщепление полипептидной цепи на фрагменты проводят обычно при помощи протеолитических ферментов, таких, как трипсин, химотрипсин или пепсин. Эти ферменты действуют на различные участки полипептидной цепи, так как имеют повышенное сродство к различным аминокислотным остаткам. Необходимо учитывать также соседние аминокислотные остатки, т.е. пространственное окружение атакуемой пептидной связи. Оказалось, что трипсин гидролизует только те пептидные связи, в образовании которых участвует карбоксильная группа лизина или аргинина, а химотрипсин гидролизует связи по фенилаланину, триптофану и тирозину. Обычно протеолитические ферменты, гидролизующие полипептидные цепи, предварительно иммобилизуют на нерастворимых матрицах для более легкого отделения их от продуктов гидролиза. Далее определяют аминокислотные последовательности каждого полипептидного фрагмента. Для этого чаще всего используют метод Эдмана, заключающийся в анализе полипептида только с N-конца. Концевая аминокислота при взаимодействии с фенилизотиоцианатом в щелочной среде образует стойкое соединение, которое можно отщепить от полипептида без его деградации. Фенилтиогидантоиновое (ФТГ) производное аминокислоты идентифицируется хроматографическим методом.
После идентификации концевого N-аминокислотного остатка метка вводится в следующий аминокислотный остаток, который становится концевым. Метод Эдмана можно автоматизировать, пользуя секвенатор (от англ. sequetice- последовательность) с помощью которого ФТГ-производные отщепляются от полипептида и идентифицируются посредством высокоэффективной жидкостной хроматографии.
Ф. Сэнгер впервые полностью расшифровал первичную структуру белкового гормона инсулина, используя метод Эдмана.
Другим высокочувствительным методом является так называемый дансильный метод, связанный с присоединением к концевой аминокислоте дансилхлорида (1-диметиламино-нафталин-5-сульфохлорида) по следующей схеме:
Определение вторичной структуры белков
Для определения вторичной структуры белков используются в основном оптические методы. Конечно, более надежным является рентгеноструктурный метод, однако его применение сопряжено с определенными трудностями и требует значительного времени. Такие оптические методы, как дисперсия оптического вращения и круговой дихроизм, являются более простыми и, что весьма важно, позволяют определять изменения вторичной структуры белка в растворах. При помощи дисперсии оптического вращения можно получить информацию о степени спирализации белковой макромолекулы. Несмотря на то, что метод является приближенным, достаточно отчетливо просматриваются переходы типа спираль-клубок. Что касается метода кругового дихроизма, то его спектр определяется набором углов ψ и φ,свойственных тому или иному типу вторичной структуры. Оба метода можно расценивать как скриннинговые, и для полной идентификации вторичной структуры их надо комбинировать с рентгеноструктурным анализом белков.
Определение третичной и четвертичной структур белков
Третичная и четвертичная структуры белков определяются при помощи рентгеноструктурного анализа, который впервые был проведен применительно к миоглобину и гемоглобину Дж. Кендрью и М. Перутцем в Кембридже. Значение рентгеноструктурного анализа белков трудно переоценить, так как именно этот метод дал возможность впервые получить своеобразную фотографию белковой молекулы. Для получения информативной рентгенограммы необходимо было иметь полноценный кристалл белка с включенными в него атомами тяжелых металлов, так как последние рассеивают рентгеновские лучи сильнее атомов белка и изменяют интенсивность дифрагированных лучей. Таким образом можно определить фазу дифрагированных на белковом кристалле лучей и затем электронную плотность белковой молекулы.
Это впервые удалось сделать М. Перутцу в 1954 г., что явилось предпосылкой для построения приближенной модели молекулы белка, которая затем была уточнена при помощи ЭВМ. Однако первым белком, пространственная структура которого была полностью идентифицирована Дж. Кендрью, оказался миоглобин, состоящий из 153 аминокислотных остатков, образующих одну полипептидную цепь. В результате было экспериментально подтверждено предположение Л. Полинга и Р. Кори о наличии в молекуле миоглобина α-спиральных участков, а также М. Перутца и Л. Брэгга о том, что они имеют цилиндрическую форму. Несколько позднее М. Перутцем была расшифрована структура гемоглобина, состоящая из 574 аминокислотных остатков и содержащая около 10000 атомов. В отличие от миоглобина гемоглобин имеет четвертичную структуру, включающую в себя четыре глобулы: две α-субъединицы и две β-субъединицы[1].
Денатурация белков
Под денатурацией понимают изменение пространственной структуры белков и, как следствие, уменьшение или полное подавление функциональной активности, растворимости и других биологических и физико-химических свойств. Следует различать денатурацию и деградацию белков. При деградации происходит фрагментация первичной структуры и образование фрагментов белковой макромолекулы. Денатурация не сопровождается фрагментацией, однако может происходить разрыв дисульфидных мостиков, а также слабых водородных, гидрофобных и электростатических связей. В результате изменениям подвергается четвертичная (при ее наличии), третичная и в меньшей степени вторичная структуры.
Денатурирующие агенты делятся на химические и физические. К последним относится прежде всего температурное воздействие, в частности замораживание или нагревание, а также давление, ультразвуковое воздействие, облучение и др. Химические агенты — это органические растворители (ацетон, хлороформ, спирт), концентрированные кислоты, щелочи, ионы тяжелых металлов. В лабораторной практике в качестве денатурирующих агентов чаще всего используют мочевину или гуанидинхлорид, легко разрывающие водородные и гидрофобные связи, при помощи которых формируется третичная структура белка. Максимальное денатурирующее действие оба реагента проявляютпри высоких концентрациях (8-10 моль/л). Тепловая денатурация белков в растворах при 50-60°С также связана с разрывом связей, при помощи которых образуется третичная структура. Денатурация, осуществляемая в мягких условиях, часто оказывается обратимой, т.е. при удалении денатурирующего агента происходит восстановление нативной конформации белковой молекулы. Для ряда белков восстановление связей может быть 100% -м, причем это касается не только водородных или гидрофобных связей, но и дисульфидных мостиков. Денатурация изменяет как стабильность, так и функции белков, поэтому весьма важно определять ее характер в научных экспериментах, а также при применении белков в промышленности и медицине. Как правило, при денатурации изменяется форма белковой молекулы, поэтому для контроля ее нативности применяют такие методы, как коэффициент вращательной диффузии, рассеяние света, электронная микроскопия. Кроме того, при переходе молекулы белка в денатурированную форму меняется ее растворимость, спектры поглощения, иммунохимические свойства [5].
Выделение и очистка белков
Для изучения структур и функций белков требуется выделение и очистка их с минимальным количеством примесей, а в идеале — до гомогенного состояния. Связи, поддерживающие высшие структуры белковых макромолекул, легко разрываются, число гидрофобных и гидрофильных группировок на поверхности белковых глобул изменяется, что сказывается в первую очередь на их растворимости. Для выделения белков из клеток последние разрушаются, причем если для деградации цитоплазматических мембран животных клеток достаточно применения гомогенизаторов, то разрушение клеточных стенок растительных и особенно микробных клеток требует больших усилий (ультразвук, шаровые мельницы и т.д.). После удаления остатков клеточных структур при помощи диализа освобождаются от различных малых молекул. Затем последовательно используются различные методы фракционирования.
Высаливание. Высокие концентрации сульфата аммония, а также солей щелочных металлов осаждают белки. Механизм осаждения связан со способностью солей разрушать гидратную оболочку растворенных белковых макромолекул, что приводит к их агрегации и последующему осаждению. Далее используют ряд методов концентрирования и тонкой очистки белков, причем наиболее эффективными являются различные хроматографические процедуры. К преимуществам хроматографических методов следует отнести:
. технологическую гибкость — разделение веществ можно осуществлять при реализации различных типов межмолекулярных взаимодействий сорбент-сорбат;
. динамичность, т.е. большое преимущество перед такими одноактными методами, как экстракция и осаждение. Концентрирование продукта в этом случае состоит в селективности взаимодействия хроматографического носителя с целевым веществом, содержащимся в многокомпонентной смеси;
. вещества в процессе хроматографического разделения, как правило, не подвергаются химическим изменениям [2].
Дата добавления: 2018-04-15 ; просмотров: 1252 ; Мы поможем в написании вашей работы!
Источник
Методы определения вторичной структуры белков (стр. 1 )
| Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 |
Санкт-Петербургский государственный технический университет
Методы определения вторичной структуры белков
Инфракрасная спектроскопия и спектроскопия кругового дихроизма.
1. Спектры кругового дихроизма белков
1.1 Явление кругового дихроизма
1.2 Методы анализа спектров кругового дихроизма белков
1.3 Работа с пакетом программ STRUCTURE по анализу спектров КД белков
2. Инфракрасные спектры поглощения белков
2.1 Поглощение белков в ИК-области
2.2 Методы анализа ИК-спектров белков
2.3 Работа с пакетом программ STRUC по анализу ИК-спектров белков
Введение
Хромофоры белковых молекул (то есть химические группы в молекуле белка, ответственные за поглощение света на определенных длинах волн) можно разделить на три класса: пептидные группы, боковые группы аминокислотных остатков и простетические группы. Спектроскопические методы исследования вторичной структуры белка основаны на изучении спектров именно пептидных хромофоров, поскольку конформация пептидных групп и определяет тот или иной тип вторичной структуры белка — a-спираль, b-структуру и др. Изучение поглощения света пептидными группами белка обычно проводится в ультрафиолетовом и в инфракрасном диапазонах. Как показывают эксперименты, простая адсорбционная спектроскопия белков в неполяризованном ультрафиолетовом свете мало пригодна для анализа вторичной структуры белка. Более ценную информацию можно извлечь из спектров кругового дихроизма белка. Инфракрасные спектры поглощения белка также пригодны для анализа его вторичной структуры [1]. Ниже будет рассмотрено применение методов измерения кругового дихроизма и инфракрасной спектроскопии для анализа вторичной структуры белка.
(«1»)
1. Спектры кругового дихроизма белков
1.1 Явление кругового дихроизма
Белки, как практически все биологические молекулы, вследствие своей пространственной асимметрии обладают оптической активностью. При прохождении через оптически активную среду плоскополяризованный свет становится эллиптически поляризованным. Эллиптичность света q является одной из мер оптической активности. Она определяется как арктангенс отношения малой и большой осей эллипса. Другим параметром, характеризующим оптическую активность, является отклонение большой оси эллипса от направления поляризации падающего света, называемое оптическим вращением (или дисперсией оптического вращения) j.
Если представить плоскополяризованную волну Е в виде суммы двух волн противоположной круговой поляризации Е=ЕL+ЕR, то можно показать, что величина j пропорциональна разности показателей преломления среды для этих волн nL-nR, а величина q — разности коэффициентов экстинции eL-eR. Таким образом, оптическое вращение и появление эллиптической поляризации у плоскополяризованного света при прохождении его через оптически активную среду можно объяснить различным замедлением (nL¹nR) и поглощением (eL¹eR) двух его составляющих ЕL и ЕR, поляризованных по кругу. Разность Dn=nL-nR называют круговым двулучепреломлением, а разность De=eL-eR — круговым дихроизмом. Зависимости этих величин от длины волны называют спектрами дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД).
На самом деле, ДОВ и КД являются проявлениями одного и того же физического явления, а их спектры можно выводить один из другого. Поэтому на практике достаточно измерять лишь один из этих двух спектров. Спектры КД более удобны для использования на практике, поскольку содержат узкие, хорошо разрешимые полосы. Этим объясняется то, что в настоящее время метод измерения КД используется гораздо более широко, чем ДОВ, несмотря на то, что он требует гораздо более сложного экспериментального оборудования.
КД легко измерить путем попеременного пропускания через образец лево — и правополяризованного по кругу света и регистрации соответствующей разницы поглощений, поскольку эллиптичность выходящего из оптически активного образца света обычно очень мала, и ее точное измерение весьма затруднительно. Однако, разность поглощений обычно пересчитывают в значения эллиптичности. Для того, чтобы можно было сравнивать результаты, полученные при исследовании разных образцов, пользуются значениями так называемой молярной эллиптичности:
[q] = 100q / Cl = 3300 De, (1.1.1)
где С — молярная концентрация, а l — длина оптического пути.
В случае белков главной целью измерения спектров КД является определение содержания в них вторичных структур разных типов. Если доля ароматических аминокислот в белке не очень велика, его оптическая активность в области от 180 до 240 нм определяется главным образом полипептидным остовом. Многочисленные эксперименты показали, что алифатические боковые группы аминокислотных остатков белка также не дают заметного вклада в спектр КД в этой области. Следовательно, в первом приближении белковую молекулу можно рассматривать просто как комбинацию участков полипептидным остова, находящихся в конформациях a-спирали, b-структуры и беспорядочного клубка.
Поглощение света пептидной группой
в ультрафиолетовом диапазоне определяется электронными переходами в ее электронных оболочках. В этом процессе основное участие принимают три молекулярных орбитали пептидной группы: n-орбиталь — несвязывающая орбиталь, на которой располагается неподеленная пара 2py-электронов атома кислорода, p-орбиталь — связывающая орбиталь, на которой располагаются 2pz-электрон атома кислорода и 2pz-электрон атома углерода, в значительной степени делокализованные по атомам кислорода, углерода и азота, и p*-орбиталь — разрыхляющая орбиталь, на которой в основном состоянии электроны отсутствуют. Два электронных перехода с наименьшей энергией наблюдаются при возбуждении электрона с n-орбитали на p*-орбиталь (n®p* переход) и с p-орбитали на p*-орбиталь (p®p* переход). n®p* переходу в пептидах соответствует слабая полоса поглощения 210-220 нм, а p®p* переходу гораздо более сильная полоса с максимумом вблизи 190 нм (характерная для a-спиральной конформации).
КД различных типов вторичной структуры белка можно оценить по результатам измерения КД гомополипептидов известной конформации (например, поли-L-лизина), после чего определить вклад каждой из структур в спектр КД исследуемого белка. Однако, такой подход имеет ряд больших недостатков. Во-первых, участки упорядоченной вторичной структуры модельных гомополипептидов имеют значительно большую длину, чем длина типичных участков в глобулярных белках. Во-вторых, их конформация может сильно отличаться от конформации, наблюдаемой у элементов вторичной структуры реальных белков. Кроме этого, среди гомополипептидов нельзя найти «стандартов» для b-изгибов. И, наконец, хотя вклад в КД от взаимодействий между хромофорами уменьшается как квадрат расстояния между ними, должен существовать определенный вклад от взаимодействия между участками с различной вторичной структурой. Эти взаимодействия нельзя адекватно смоделировать, рассматривая протяженные гомополимеры. Поэтому на практике спектры КД гомополипептидов не используются. Вместо этого в качестве базисных берут спектры КД белков, структура которых известна из данных рентгеноструктурного анализа. Различные подходы к анализу исследуемого спектра КД на основе этого базисного набора определяют различия между методами, которые будут описаны ниже.
1.2 Методы анализа спектров кругового дихроизма белков
Метод «эталонных спектров» [2,3]. Методы предсказания вторичной структуры белков по их спектрам КД основаны на предположении о том, что спектры КД различных структурных форм, составляющих белковую молекулу, дают аддитивный вклад в спектр КД белка в целом. Это можно записать в следующем виде:
(1.2.1)
где — спектр КД белка (зависимость эллиптичности от длины волны света),
— идеализированный «эталонный спектр» — спектр КД, соответствующий i-ой структурной форме, участвующей в образовании вторичной структуры белка,
— доля этой формы во вторичной структуре, причем
и
. (1.2.2)
Эталонные спектры для всех структурных форм могут быть вычислены на основании набора базисных спектров КД (спектров белков с известной вторичной структурой — коэффициентами
) с помощью метода наименьших квадратов и формулы (1.2.1), примененной к каждому базисному спектру. После этого экспериментальный спектр КД исследуемого белка с помощью того же метода наименьших квадратов может быть аппроксимирован по формуле (1.2.1) с использованием вычисленных эталонных спектров. При этом вклад каждого из эталонных спектров будет равен доле соответствующей ему структурной форме в общей структуре белка Такой подход к анализу спектров КД белков был впервые использован в работе [2]. Ниже будет более подробно рассмотрена модификация этого метода [3].
Принимая в рассмотрение в качестве структурных классов a-спираль (H), b-структуру (b), b-изгиб (t) и “неупорядоченную” форму (R), можем написать:
(«2») . (1.2.3)
Суммируя экспериментальные данные, вместо в уравнение (1.2.3) вводят величину
, учитывающую зависимость эталонного спектра, соответствующего a-спирали, от числа аминокислотных остатков, образующих ее:
, (1.2.4)
где и
— эталонные спектры для a-спирали из n аминокислотных остатков и для a-спирали “бесконечной” длины, а k — так называемый фактор длины цепи (
). Согласно теоретическим расчетам оптической активности a-спирали и экспериментальным данным, спектр КД a-спирали
в диапазоне 185-240 нм может быть разложен на три независимых оптически активных составляющих (n®p*, p®p||*, p®p^*), которые можно описать гауссовскими зависимостями:
, (1.2.5)
где и
— положение максимума и полуширина j-ой гауссовской линии в спектре КД a-спирали, а
— максимальное значение эллиптичности “бесконечной” a-спирали на длине волны
. В окончательном виде для спектра КД белка можно написать следующее выражение:
, (1.2.6)
. (1.2.7)
Здесь — среднее число аминокислот на a-спиральный участок цепи в молекуле белка.
Параметры ,
,
и
в уравнении (1.2.7) были найдены на основе спектра КД миоглобина. Они имеют следующие значения:
, нм
, нм
, град×см2×дмоль-1
-3.73×10
-3.72×10
+10.1×10
(«3») Эти параметры для глобулярных белков с достаточно большой точностью можно считать постоянными. Попытки оценить для конкретных белков по их спектрам КД оказались ненадежными. Для большинства исследованных белков этот параметр оказался равным примерно 10-11 аминокислотам на a-спиральный сегмент. Распространяя этот факт на все анализируемые белки, авторы данного метода положили
равным 10.
Источник