Способы определения тяжелых металлов

Тяжелые металлы

На сегодняшний день известно порядка 40 различных трактовок термина «тяжелые металлы», и совершенно невозможно выделить одну наиболее правильную. Так, каждое определение тяжелых металлов будет включать свой перечень элементов согласно с теми или иными критериями. Зачастую характеристика тяжелых металлов основывается на: атомной массе, плотности, токсичности, распространенности в природной среде, степени вовлеченности в природные и техногенные циклы. Например, основным критерием может являться минимальная относительная атомная масса, равная 50. Согласно данной особенности, под список «тяжелых металлов» попадут абсолютно все металлы, начиная с ванадия, вне зависимости от их плотности. Однако, в других определениях данного термина именно плотность является главной характеристикой, на основе которой и составляется перечень, и она должна быть более или равной 8 г/см 3 (плотность железа). Согласно данному критерию в список «тяжелых металлов» будут включены следующие элементы: свинец, ртуть, медь, кадмий, кобальт, а вот олово уже будет исключено из данного списка, так оно более легкое. Кроме того, также в основе классификации металлов могут находится и другие значения пороговой плотности (например, в 5 г/см 3 ) или атомной массы. Таким образом, к некоторым группа тяжелых металлов могут попадать элементы, которые являются хрупкими или металлоидами (например, висмут или мышьяк, соответственно). В связи с этим, термин «тяжелые металлы» рассматривается с медицинской и природоохранной точек зрения. Это позволяет при составлении списка тяжелых металлов основываться не только на физических и химический свойствах элемента, но и на его биологической активности, токсичности, а также объеме его применения в хозяйственной деятельности.

Однако, все же в большинстве случаев, в список тяжелых металлов входит 40 элементов, имеющие относительную плотность, превышающую 6. Не смотря на то, что термин «тяжелые металлы» и «токсичные металлы» принято считать синонимами, все же количество опасных металлов существенно меньше, что не может не радовать.

В первую очередь интерес представляют элементы, имеющие самое широкое и активное использование в производстве, в результате чего происходит их накопление в окружающей среде, что и представляет опасность здоровью человечества с точки зрения их биологической активности и токсичности. Среди таковых следует выделить свинец, ртуть, кадмий, цинк, висмут, кобальт, никель, медь, олово, сурьму, ванадий, марганец, хром, молибден и мышьяк.

Свойства тяжелых металлов

Тяжелые металлы в атмосфере представляют собой органические и неорганические соединения. Они могут присутствовать как пыль, аэрозоль, или же иметь газообразную элементную форму (например, ртуть). Стоит отметить, что свинец, кадмий, медь и цинк в виде аэрозоля включают в себя, главным образом, субмикронные частицы, диаметр которых составляет примерно 0,5 – 1 мкм. А вот частицы никеля и кобальта в виде аэрозоля представляют собой крупнодисперсные частицы, имеющие диаметр, превышающий 1 мкм. Их образование, в основном, происходит во время сгорания дизельного топлива.

В водной среде тяжелые металлы могут быть представлены в виде трех основных форм: взвешенных частиц, коллоидных частиц, а также растворенных соединений. Последние представляют собой свободные ионы и растворимые комплексные соединения с органическими (гуминовые и фульвокислоты) и неорганическими (галогены, сульфаты, фосфаты, карбонаты) лигандами. Форма нахождения элемента в воде определяется гидролизом, который очень сильно влияет на нахождение указанных элементов в водной среде. Огромное количество тяжелых металлов переносится посредством поверхностных вод во взвешенном состоянии.

Содержание тяжелых металлов в почвах представлено водорастворимой, ионообменной и непрочно адсорбированной формах. Первые, главным образом, представляют собой хлориды, нитраты, сульфаты, а также органические комплексные соединения. Следует сказать, что часто отмечается связь ионов тяжелых металлов с минералами почвы, как часть кристаллической решетки.

В таблице представлены биогеохимические свойства тяжелых металлов, оценка которых осуществлялась по трем главным критериям: высокая (В), умеренная (У), низкая (Н).

Читайте также:  Способы разделения углеводородных смесей

Стоит отметить, что к биогеохимическим свойствам тяжелых металлов относятся токсичность, канцерогенность, растворимость и многие другие, которые выражены у них по-разному. Однако, существует два основных свойства, на основе которых и определяется степень опасности того или иного тяжелого металла для живого организма в зависимости от концентрации. К данным свойствам относятся: биохимическая активность и органическая форма распространения.

Определение тяжелых металлов

На сегодняшний день есть две главные группы аналитических методов, которые позволяют определять тяжелые металлы (например, в воде или почве), а именно:

  • электрохимические методы;
  • спектрометрические методы.

Стоит отметить что вторая группа постепенно сдает свои позиции и уступает электрохимическим методам.

Среди спектрометрических методов следует выделить наиболее распространенный – атомно-абсорбционную спектрометрию с разной атомизацией образцов. В том случае, когда необходимо определить несколько элементов одновременно, главным методом определения выступают атомная эмиссионная спектрометрия с индукционно связанной плазмой, а также масс-спектрометрия с индукционно связанной плазмой.

Для того, чтобы определить тяжелые металлы электрохимическими способами пробу переводят в водный раствор. К электрохимическим методам относятся: полярографический (вольтамперометрический), потенциометрический, кулонометрический, кондуктометрический и многие другие. Стоит отметить, что бывают ситуации, когда невозможно определить тяжелые металлы с помощью лишь только одного метода, тогда используются сразу несколько методов с дальнейшим титрованием. Данные методы основываются на анализе вольт-амперных характеристик, потенциалов ион-селективных электродов, интегрального заряда, который служит для того, чтобы искомый метал выпал в осадок на электроде электрохимической ячейке, электропроводности раствора и т.д. Указанные способы позволяют определять тяжелые металлы до 10 -9 моль/л.

Группа спектральных анализов является включает в себя множество различных методов, с помощью которых осуществляется определение тяжелых металлов. Прежде всего, она включает в свой перечень атомный эмиссионный анализ, атомный абсорбционный анализ, спектрофотометрию, масс-спектрометрию, спектрометрию с индуктивно связанной плазмой, рентгеноспектральный анализ.

В отдельных случаях, когда концентрация тяжелых металлов находится в достаточно небольшой концентрации, то они определяются, зачастую, несколькими методами спектрометрии.

Иногда, для определения тяжелых металлов, следует прибегнуть к комплексным методам, которые сочетают в себе как спектральные, как и электрохимические способы. Одним из таких методов является спектрополяриметральный анализ.

Самый тяжелый металл

Определить и назвать один единственный самый тяжелый металл невозможно, так как критерии определения «тяжести» металла могут быть совершенно разными. Об этом шла речь в начале данной статьи. Таким образом, одним из самых тяжелых металлов является свинец, которому не уступают цинк, олово, железо, и медь, однако он не может носить титул самого тяжелого металла. Например, свинец существенно уступает жидкому металлу – ртути. Так, если поместить в ртуть кусочек свинца, то он не утонет, а будет уверенно держаться на ее поверхности. Бутылка с ртутью объемом в 1 литр будет весить 14 кг. Но, не смотря на это, и ртуть не является самым тяжелым металлом, так как золото и платина тяжелее ртути в полтора раза.

Опережают золото и платину редкие металлы – иридий и осмий, которые в два раза тяжелее железа. Итак, самые тяжелые металлы, согласно их удельному весу:

  • цинк – 7,1;
  • олово – 7,3;
  • железо – 7,8;
  • медь – 8,9;
  • свинец – 11,3;
  • ртуть – 13,6;
  • золото – 19,3;
  • платина – 21,5;
  • иридий – 22,4;
  • осмий – 22,5

Если же взять за основную характеристику тяжелых металлов плотность, то список будет отличаться, и в него войдут следующие элементы:

  • тантал – 16,67 г/см 3 ;
  • уран – 19,05 г/см 3 ;
  • вольфрам – 19,29 г/см 3 ;
  • золото – 19,29 г/см 3 ;
  • плутоний – 19,80 г/см 3 ;
  • нептуний – 20,47 г/см 3 ;
  • рений – 21,01 г/см 3 ;
  • платина – 21,40 г/см 3 ;
  • осмий – 22,61 г/см 3 ;
  • иридий – 22,65 г/см 3 ;

Однако, существует перечень металлов, которых общепринято считать тяжелыми. Основные тяжелые металлы:

Особенности тяжелых металлов заключаются в том, что все они обладают высокой токсичностью и в некоторых случаях несут угрозу здоровью и жизни живых организмов. Кроме этого, они обладают способностью к биоаккумуляции и биомагнификации.

Читайте также:  Способ разработки программного обеспечения

Применение тяжелых металлов

В далекие времена появившиеся первые металлы в жизни человека существенно облегчили его существование на Земле. Ведь металл является более прочным материалом, чем камень или дерево. Из металла получались более продуктивные орудия труда, более разрушительное оружие, а также более надежная защита. Кроме этого, из металла люди также научились изготавливать украшения, посуду, различные ритуальные предметы, а также предметы повседневного обихода. На сегодняшний день человечеству известно порядка 70 металлов, часть из которых, согласно разным определениям и критериям отбора, являются тяжелыми. Благодаря своим уникальным свойствам и особенностям, тяжелые металлы нашли свое применение во многих сферах человеческой деятельности, в частности, в машиностроении, судостроении, авиастроении, медицине, производстве техники и электроники, строительстве, в производстве посуды, украшений, а также вещей повседневного обихода.

Например, свинец используется для покрытия различной аппаратуры с целью ее защиты от коррозии. Также его используют в качестве оболочки кабелей, которые прокладываются под землей, в воде или любой другой влажной среде. Для зажигания двигателей внутреннего сгорания все так же используются свинцовые аккумуляторы, не смотря на то, что уже в природе давно существуют никелевые аккумуляторы, однако, стоимость последних значительно выше.

Ртуть также нашла свое широкое применение в электротехнике, электронике, приборостроении, металлургии, химии (изготовление термометров, барометров, реле, лампы дневного света, кварцевые ртутные лампы) и т.д.

Медь благодаря своему низкому удельному сопротивлению и высокой теплопроводности, достаточно широко используется в электротехнике – она является основным материалом, из которого производят силовые и другие кабели, провода, другие проводники. Из меди изготавливают различные теплообменники – радиаторы охлаждения, кондиционирования, отопления, компьютерные кулеры, тепловые трубки и многое другое.

Данные элементы добываются из руды тяжелых металлов – изначально извлекается руда, после чего осуществляется ее обогащение и затем при помощи химического или электролитического восстановления уже получается сам металл.

Источник

Методы обнаружения тяжелых металлов

В настоящее время существуют две основные группы аналитических методов для определения тяжелых металлов: электрохимические и спектрометрические методы. В последнее время с развитием микроэлектроники электрохимические методы получают новое развитие, тогда как ранее они постепенно вытеснялись спектрометрическими методами. Среди спектрометрических методов определения тяжелых металлов первое место занимает атомно-абсорбционная спектрометрия с разной атомизацией образцов: атомно-абсорбционная спектрометрия с пламенной атомизацией (FAAS) и атомно-абсорбционная спектрометрия с электротермической атомизацией в графитовой кювете (GF AAS). Основными способами определения нескольких элементов одновременно являются атомная эмиссионная спектрометрия с индукционно связанной плазмой (ICP-AES) и масс-спектрометрия с индукционно связанной плазмой (ICP-MS). За исключением ICP-MS остальные спектрометрические методы имеют слишком высокий предел обнаружения для определения тяжелых металлов в воде.

Определение содержание тяжёлых металлов в пробе производится путем перевода пробы в раствор – за счет химического растворения в подходящем растворителе (воде, водных растворах кислот, реже щелочей) или сплавления с подходящим флюсом из числа щелочей, оксидов, солей с последующим выщелачиванием водой. После этого соединение искомого металла переводится в осадок добавлением раствора соответствующего реагента – соли или щелочи, осадок отделяется, высушивается или прокаливается до постоянного веса, и содержание тяжёлых металлов определяется взвешиванием на аналитических весах и пересчетом на исходное содержание в пробе. При квалифицированном применении метод дает наиболее точные значения содержания тяжёлых металлов, но требует больших затрат времени.

Для определения содержания тяжёлых металлов электрохимическими методами пробу также необходимо перевести в водный раствор. После этого содержание тяжёлых металлов определяется различными электрохимическими методами – полярографическим (вольтамперометрическим), потенциометрическим, кулонометрическим, кондуктометрическим и другими, а также сочетанием некоторых из перечисленных методов с титрованием. В основу определения содержания тяжёлых металлов указанными методами положен анализ вольт-амперных характеристик, потенциалов ион-селективных электродов, интегрального заряда, необходимого для осаждения искомого металла на электроде электрохимической ячейки (катоде), электропроводности раствора и др., а также электрохимический контроль реакций нейтрализации и др. в растворах. С помощью этих методов можно определять тяжёлые металлы до 10 -9 моль/л.

Читайте также:  Смесь для бородинского хлеба печем дома способ приготовления

Методы очистки

В случае если металлы содержатся в воде в ионной форме, обработка воды сводится к изменению водородного показателя (pH) до нужного уровня, чтобы перевести металлы в нерастворимую форму (для многих металлов оптимальным является pH 9.0-10.5) с последующим отделением металла в виде осадка от воды. В каждом конкретном случае, в зависимости от присутствия различных примесей в обрабатываемой воде, концентрации металла, степени требуемой очистки, и т. д., для обработки могут применяться различные химикаты — катализаторы, коагуляторы и т. д., каждый из которых позволяет сделать процесс обработки более надёжным и эффективным. Самый простой способ разделения металла, переведённого в нерастворимую форму, и воды — это гравитационное осаждение в специальных осаждающих ёмкостях с периодической откачкой осевшего на дно металла на обезвоживание и просушку. Самым большим недостатком этого метода является его повышенная чувствительность к присутствию в воде других соединений и, в особенности — перекиси водорода и мыла или детергентов, которые не дают сформироавшемуся осадку высаживаться на дно. Значительно более надёжным является мембранный метод сепарации, где вместо осаждающей ёмкости используется специальная мембранная установка, позволяющая сконцентрировать осадок до густоты зубной пасты и при этом получать обработанную воду с постоянно низкой остаточной концентрацией металла (обычно менее 1мг/литр). В случае необходимости обработки больших объёмов сточных вод с относительно невысоким содержанием металлов наиболее оптимальной является ионо-обменная технология, использующая способность ионообменных смол аккумулировать на своей поверхности, при определённых условиях, ионы металлов. Степень очистки воды данным методом очень высока. Смола, по достижении точки насыщения, регенерируется кислотой. В процессе регенерации получается небольшой объём кислоты с высоким содержанием металла. Срок службы смолы, в зависимости от нагрузки, исчисляется годами. Если сточные воды, содержащие тяжелые металлы, осложнены присутствием сильных хелантов, то перечисленные выше методы обработки будут малоэффективны. Как правило, сточные воды подобного типа встречаются в гальванических и электролизных производствах в виде отработанных растворов и сравнительно не велики по объёму. Для сточных вод подобного типа рекомендуется химический метод циклической обработки в специальных ёмкостях-реакторах. Циклический процесс обработки состоит из нескольких последовательных операций: закачки обрабатываемого раствора, выставления необходимого pH, добавления необходимых химикатов, перемешивания, прокачки через прессующий фильтр (обезвоживание) и, если необходимо, подсушивание получаемого твёрдого продукта. В зависимости от содержащихся в растворе металлов, соответственно меняется и состав реактивов для обработки.

Заключение

В заключение моей работы хотелось бы сказать, что воздействие тяжелых металлов, очень пагубно сказывается на окружающей среде. Приводит к загрязнению воды, отравлению гидробионтов тяжелыми металлами. Такое воздействие связано с антропогенным фактором. Предприятия не производят должную очистку сбрасываемых вод, что отрицательно сказывается на экологии. Я считаю что на предприятия тяжелой, химической, текстильной, и прочих промышленностей, должны устанавливаться новейшие очистные системы, для решения этой острой проблемы.

Список литературы

1. Майстренко В.Н., Хамитов Р.З., Будников Г.К. Экологический мониторинг суперэкотоксикантов. М.: Химия, 1996. — 320 с.

2. Миркин Б.М., Наумова Л.Г. Экология России. М.: 1995. — 232 с.

3. Мур Дж., Рамамурти С. Тяжелые металлы в природных водах. М.: Мир, 1987. — 286 с.

4. Никаноров А.М., Жулидов А.В. Биомониторинг металлов в пресноводных экосистемах. СПб.: Гидрометеоиздат, 1991. — 312 с.

5. Уильямс Д. Металлы жизни. М.: Мир, 1975. — 236 с.

6. Шустов С.Б., Шустова Л.В. Химические основы экологии. М.: Просвещение, 1995. — 240 с.

Источник

Оцените статью
Разные способы