Способы определения точки пересечения прямой с плоскости

Точка пересечения прямой и плоскости онлайн

С помощю этого онлайн калькулятора можно найти точку пересечения прямой и плоскости. Дается подробное решение с пояснениями. Для нахождения координат точки пересечения прямой и плоскости задайте вид уравнения прямой («канонический» или «параметрический» ), введите данные в уравнения прямой и плоскости и нажимайте на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Точка пересечения прямой и плоскости − теория, примеры и решения

1. Точка пересечения плоскости и прямой, заданной в каноническом виде

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямая L1:

, (1)
α: Ax+By+Cz+D=0. (2)

Найти точку пересечения прямой L1 и плоскости α (Рис.1).

Запишем уравнение (1) в виде системы двух линейных уравнений:

, (3)
(4)

Сделаем перекрестное умножение в уравнениях (3) и (4):

Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:

Решим систему линейных уравнений (2), (5), (6) с тремя неизвестными x, y, z. Для этого в уравнении (2) переведем свободный член в правую часть уравнения и запишем эту систему в матричном виде:

(7)

Как решить систему линейных уравнений (11)(или (2), (5), (6)) посмотрите на странице Метод Гаусса онлайн или на примерах ниже. Если система линейных уравнениий (7) несовместна, то прямая L1 и плоскость α не пересекаются. Если система (7) имеет множество решений, то прямая L1 лежит на плоскости α. Единственное решение системы линейных уравнений (7) указывает на то, что это решение определяет координаты точки пересечения прямой L1 и плоскости α.

Замечание. Если прямая задана параметрическим уравнением, то уранение прямой нужно приводить к каноническому виду и применить метод, описанный выше, или же

2. Точка пересечения плоскости и прямой, заданной в параметрическом виде.

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат задана прямая L1 в параметрическом виде:

(8)
α: Ax+By+Cz+D=0. (9)

Задачу нахождения нахождения точки пересечения прямых L1 и плоскости α можно решить разными методами.

Читайте также:  Настройки способы оплаты google play

Метод 1. Приведем уравнения прямой L1 к каноническому виду.

Для приведения уравнения (8) к каноническому виду, выразим параметр t через остальные переменные:

(10)

Так как левые части уравнений (10) равны, то можем записать:

(11)

Далее, для нахождения точки пересечения прямой и плоскости нужно воспользоваться параграфом 1.

Метод 2. Для нахождения точки пересечения прямой L1 и плоскости α решим совместно уравнения (8) и (9). Из уравнений (8) подставим x, y, z в (9):

(13)

Откроем скобки и найдем t:

(14)

Если числитель и знаменатель в уравнении (14) одновременно равны нулю, то это значит, что прямая L1 лежит на полскости α. Если в уравнении (14) числитель отличен от нуля, а знаменатель равен нулю, то прямая и плоскость параллельны.

Если же числитель и знаменатель в уравнении (14) отличны от нуля, то прямая и плоскость пересекаются в одной точке. Для нахождения координат точки пересечения прямой L1 и плоскости α подставим полученное значение t из (14) в (8).

3. Примеры нахождения точки пересечения прямой и плоскости.

Пример 1. Найти точку пересечения прямой L1:

(15)

Представим уравнение (15) в виде двух уравнений:

(17)
(18)

Сделаем перекрестное умножение в уравнениях (17) и (18):

Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:

Для нахождения точки пересечения прямой L1 и плосклсти α нужно решить совместно уравнения (2), (19) и (20). Для этого переведем в уравнении (2) свободный член на правую сторону уравнения и построим матричное уравнение для системы линейных уравнений (2), (19) и (20):

(21)

Решим систему линейных уравнений (21) отностительно x, y, z. Для решения системы, построим расширенную матрицу:

Обозначим через aij элементы i-ой строки и j-ого столбца.

Первый этап. Прямой ход Гаусса.

Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строку 3 со строкой 1, умноженной на −7/3:

Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строку 3 со строкой 2, умноженной на 4/3:

Второй этап. Обратный ход Гаусса.

Исключим элементы 3-го столбца матрицы выше элемента a33. Для этого сложим строку 2 со строкой 3, умноженной на −3/2:

Исключим элементы 2-го столбца матрицы выше элемента a22. Для этого сложим строку 1 со строкой 2, умноженной на 1/2:

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Ответ. Точка пересечения прямой L1 и плоскости α имеет следующие координаты:

Пример 2. Найти точку пересечения прямой L1:

(22)

Представим уравнение (22) в виде двух уравнений:

(24)
(25)

Сделаем перекрестное умножение в уравнениях (24) и (25):

Откроем скобки и переведем переменные в левую часть уравнений а остальные элементы в правую часть:

Для нахождения точки пересечения прямой L1 и плосклсти α нужно решить совместно уравнения (2), (26) и (27). Переведем в уравнении (2) свободный член на правую сторону уравнения и построим матричное уравнение для системы линейных уравнений (2), (26) и (27):

Читайте также:  Способ определения работы силы тяжести
(28)

Решим систему линейных уравнений (21) отностительно x, y, z. Для этого построим расширенную матрицу:

Обозначим через aij элементы i-ой строки и j-ого столбца.

Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строку 3 со строкой 1, умноженной на 6/5:

Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строку 3 со строкой 2, умноженной на −1/5:

Из расширенной матрицы восстановим систему линейных уравнений:

(29)

Легко можно заметить, что последнее уравнение в (29) несовместна, так как несуществуют такие x, y, z чтобы выполнялось это равенство. Следовательно система линейных уравнений (2), (26) и (27) несовместна. Тогда прямая L1 и плоскость α не пересекаются, т.е. они параллельны.

Ответ. Прямая L1 и плоскость α параллельны, т.е. не имеют общую точку.

Пример 3. Найти точку пересечения прямой в параметрическом виде L1:

(30)

Решение. Для нахождения точки пересечения прямой L1 и плоскости α нужно найти такое значение t, при котором точка M(x, y, z) удовлетворяет уравнению (31). Поэтому подставим значения x, y, z из (30) в (31):

Упростив уравнение, получим:

Как видим, любое значение t удовлетворяет уравнению (33), т.е. любая точка на прямой L1 удовлетворяет уравнению плоскости α. Следовательно прямая L1 лежит на плоскости α.

Ответ. Прямая L1 лежит на плоскости α.

Источник

1.Способы определения точек пересечения прямой с плоскостью, с гранной поверхностью.

Если прямая и плоскость не параллельны, то они пересекаются в точке, которая принадлежит как прямой, так и плоскости.

Определение точки пересечения прямой lс плоскостьюABCв общем случае выполняется в такой последовательности:

– через прямую проводят вспомогательную проецирующую плоскость, например, απ2; ее следα»совпадает с фронтальной проекцией прямой;

– находят линию MNпересечения плоскостейαиABC;

– фиксируют точку Oпересечения прямойlи прямойMN(в данном варианте сначала определяется проекцияO’).

Видимость прямой lпо отношению к плоскостиABCопределена с помощью пар конкурирующих точекFиG,MиP.

2. Построение линии пересечения плоскости частного и общего положения, двух плоскостей общего положения.

Для построения линии пересечения двух плоскостей a и b необходимо найти две точки, N и M каждая из которых принадлежит обеим плоскостям. Для нахождения точек N и M можно воспользоваться следующим алгоритмом:

Общ+час: Спроецируем плоскости a и ABC на П1. Плоскость общего положения АВС проецируется на плоскость П1 в виде треугольника А1В1С1, а плоскость частного положения a — в виде прямой a1. На плоскости П1 прямая a1 и АВС пересекаются в точках K1 (K1 принадлежит А1В1) и N1 (N1 принадлежит А1C1). Если через точки K1 и N1 провести проецирующие прямые до пересечения с плоскостью АВС, то получатся две точки K (K принадлежит АВ) и N (N принадлежит АC). Соединив точки K и N, мы получим прямую KN. Прямая KN — линия пересечения плоскости a с плоскостью АВС.

Читайте также:  Методы способы управления кадрами

1)Взять две дополнительные плоскости частного положения 1ЧП и 2ЧП;

2)Определить линии пересечения плоскостей частного положения 1ЧП и 2ЧП с плоскостями

общего положения a и b с помощью метода, приведенного в предыдущем пункте;

3)Определить точки N и M пересечения полученных линий.

3.Перпендикулярные прямые. Привести пример определения расстояния от точки до прямой общего положения.

Пересекающиеся и скрещивающиеся прямые в пространстве могут располагаться в частности под прямым углом друг к другу. Если обе прямые – общего положения, то факт их перпендикулярности на чертеже не отражается: проекцией прямого угла будет тупой (острый) угол.

И только в случае, если одна из прямых параллельна плоскости проекций, прямой угол проецируется в натуральную величину на ту плоскость, которой прямая параллельна. Это предложение (теорема) является основополагающим для изображения на чертеже взаимно перпендикулярных прямых: тогда и только тогда прямой угол проецируется в натуральную величину, если хотя бы одна его сторона параллельна плоскости проекций, а следовательно, является или фронталью, или горизонталью.

Расстояние от точки до прямой определяется длиной перпендикуляра, опущенного из точки на прямую. Пусть необходимо определить расстояние от точки М до прямой а общего положения.

Через заданную точку M проводится плоскость s перпендикулярная заданной прямой а. Плоскость задается двумя пересекающимися прямыми, фронталью (f) и горизонталью (h): s = h f.

Находится точка пересечения (K) исходной прямой а с плоскостью s.

Определяется расстояние от точки М до точки K способом прямоугольного треугольника. Длина гипотенузы прямоугольного треугольника M2K2N2 равна расстоянию от точки M до прямой а: |MK| = M2N2.

4.Перпендикулярные прямая и плоскость. Привести примеры определения расстояния от точки до плоскости частного положения, от точки до плоскости общего положения. Привести пример построения перпендикуляра заданной длины к плоскости общего положения в точке, принадлежащей плоскости.

Прямая перпендикулярна плоскости если она перпендикулярна двум пересекающимся прямым этой плоскости.

Для того, чтобы прямая mбыла перпендикулярна плоскости, необходимо и достаточно, чтобы горизонтальная проекция прямойm1былагоризонтальной проекции горизонтали (m1h1), а фронтальная проекция прямойm2– фронтальной проекции фронтали (m2f2).

Расстояние от точки до плоскости является длина перпендикуляр опущенного из данной точки к данной плоскости.

Длину перпендикуляра можно определить с помощью прямоугольного треугольника.

Для построения перпендикуляра заданной длины для начала необходимо построить перпендикуляр произвольной длины, а затем увеличивая гипотенузу можно получить перпендикуляр заданной длины.

5.Перпендикулярные плоскости. Привести пример построения плоскости, перпендикулярной двум заданным плоскостям. Привести пример построения плоскости, параллельной заданной прямой и перпендикулярной заданной плоскости.

Известно, что плоскости перпендикулярны, если одна из них проходит через перпендикуляр к другой.

Поэтому, построение плоскости, перпендикулярной данной, предполагает построение перпендикуляра к ней из любой точки, заведомо принадлежащей искомой плоскости.

Известно, что прямая параллельна плоскости, если она параллельна прямой, лежащей в плоскости. Например, прямая m параллельна прямой l, лежащей в плоскости

Источник

Оцените статью
Разные способы