Способы определения размеров небесных тел

Определение расстояний до тел СС и размеров этих небесных тел

Тема: Определение расстояний до тел СС и размеров этих небесных тел.

I. Опрос учащихся (5-7 минут). Диктант.

Ученый, создатель гелиоцентрической системы мира. Ближайшая точка орбиты ИСЗ. Значение астрономической единицы. Основные законы небесной механики. Планета, открытая на «кончике пера». Значение круговой (I космической) скорости для Земли. Отношение квадратов периодов обращения двух планет равно 8. Чему равно отношение больших полуосей этих планет? В какой точке эллиптической орбиты ИСЗ имеет минимальную скорость? Немецкий астроном, открывший законы движения планет Формула третьего закона Кеплера, после уточнения И. Ньютона. Вид орбиты межпланетной станции, посланной для облета Луны. Чем отличается первая космическая скорость от второй. В какой конфигурации находится Венера, если она наблюдается на фоне диска Солнца? В какой конфигурации Марс ближе всего к Земле. Виды периодов движения Луны=(временных)?

II Новый материал

1) Определение расстояний до небесных тел.
В астрономии нет единого универсального способа определения расстояний. По мере перехода от близких небесных тел к более далеким одни методы определения расстояний сменяют другие, служащие, как правило, основой для последующих. Точность оценки расстояний ограничивается либо точностью самого грубого из методов, либо точностью измерения астрономической единицы длины (а. е.).
1-й способ: (известен) По третьему закону Кеплера можно определить расстояние до тел СС, зная периоды обращений и одно из расстояний.
Приближённый метод.

2-й способ: Определение расстояний до Меркурия и Венеры в моменты элонгации (из прямоугольного треугольника по углу элонгации).
3-й способ: Геометрический (параллактический).
Пример: Найти неизвестное расстояние АС.
[АВ] – Базис — основное известное расстояние, т. к. углы САВ и СВА – известны, то по формулам тригонометрии (теорема синусов) можно в ∆ найти неизвестную сторону, т. е. [CА]. Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя.
Параллакс — угол (АСВ), под которым из недоступного места виден базис (АВ — известный отрезок). В пределах СС за базис берут экваториальный радиус Земли R=6378км.

Пусть К — местонахождение наблюдателя, из которого светило видно на горизонте. Из рисунка видно, что из прямоугольного треугольника гипотенуза, расстояние D равно: , так как при малом значении угла если выражать величину угла в радианах и учитывать, что угол выражен в секундах дуги, а 1рад =57,30=3438’=206265″, то и получается вторая формула.

Угол (ρ) под которым со светила, находящегося на горизонте (┴ R — перпендикулярно лучу зрения) был бы виден экваториальный радиус Земли называется горизонтальным экваториальным параллаксом светила.
Т. к. со светила никто наблюдать не будет в силу объективных причин, то горизонтальный параллакс определяют так:

измеряем высоту светила в момент верхней кульминации из двух точек земной поверхности, находящихся на одном географическом меридиане и имеющем известные географические широты. из полученного четырехугольника вычисляют все углы (в т. ч. параллакс).

Из истории: Первое измерение параллакса (параллакса Луны) сделано в 129г до НЭ Гиппархом (180-125, Др. Греция).
Впервые расстояния до небесных тел (Луны, Солнца, планет) оценивает Аристотель (384-322, Др. Греция) в 360г до НЭ в книге «О небе» →слишком не точно, например радиус Земли в 10000 км.
В 265г до НЭ Аристарх Самосский (310-230, Др. Греция) в работе «О величине и расстоянии Солнца и Луны» определяет расстояние через лунные фазы. Так расстояния у него до Солнца (по фазе Луны в 1 четверти из прямоугольного треугольника, т. е. впервые использует базисный метод: ЗС=ЗЛ/cos 87º≈19*ЗЛ). Радиус Луны определил в 7/19 радиуса Земли, а Солнца в 6,3 радиусов Земли (на самом деле в 109 раз). На самом деле угол не 87º а 89º52′ и поэтому Солнце дальше Луны в 400 раз. Предложенные расстояния использовались многие столетия астрономами.
В 240г до НЭ ЭРАТОСФЕН (276-194, Египет) произведя измерения 22 июня в Александрии угла между вертикалью и направлением на Солнце в полдень (считал, что раз Солнце очень далеко, то лучи параллельны) и используя записи наблюдений в тот же день падения лучей света в глубокий колодец в Сиене (Асуан) (в 5000 стадий = 1/50 доли земной окружности (около 800км) т. е. Солнце находилось в зените) получает разность углов в 7º12′ и определяет размер земного шара, получив длину окружности шара 39690 км (радиус=6311км). Так была решена задача определения размера Земли, используя астрогеодезический способ. Результат не был произведён до 17 века, лишь астрономы Багдадской обсерватории в 827г немного поправили его ошибку.
В 125г до НЭ Гиппарх довольно точно определяет (в радиусах Земли) радиус Луны (3/11 R⊕) и расстояние до Луны (59 R⊕).
Точно определил расстояние до планет, приняв расстояние от Земли до Солнца за 1а. е., Н. Коперник.
Наибольший горизонтальный параллакс имеет ближайшее тело к Земле — Луна. Р=57’02»; а для Солнца Р¤=8,794″
Задача 1: учебник Пример № 6 — Найти расстояние от Земли до Луны, зная параллакс Луны и радиус Земли.
Задача 2 : (самостоятельно). На каком расстоянии от Земли находится Сатурн, если его параллакс 0,9″. [из формулы D=(206265/0,9)*6378= км = /≈9,77а. е.]
4-й способ Радиолокационный: импульс→объект →отраженный сигнал→время. Предложен советскими физиками и . Быстрое развитие радиотехники дало астрономам возможность определять расстояния до тел Солнечной системы радиолокационными методами. В 1946г была произведена первая радиолокация Луны Баем в Венгрии и в США, а в гг — радиолокация Солнца (исследования солнечной короны проводятся с 1959г), Меркурия (с 1962г на ll= 3.8, 12, 43 и 70 см), Венеры, Марса и Юпитера (в 1964 г. на волнах l = 12 и 70 см), Сатурн (в 1973 г. на волне l = 12.5 см) в Великобритании, СССР и США. Первые эхо-сигналы от солнечной короны были получены в 1959 (США), а от Венеры в 1961 (СССР, США, Великобритания). По скорости распространения радиоволн с = 3 × 105 км/сек и по промежутку времени t (сек) прохождения радиосигнала с Земли до небесного тела и обратно легко вычислить расстояние до небесного тела.
VЭМВ=С=м/с≈3*108 м/с.
Основная трудность в исследовании небесных тел методами радиолокации связана с тем, что интенсивность радиоволн при радиолокации ослабляется обратно пропорционально четвертой степени расстояния до исследуемого объекта. Поэтому радиолокаторы, используемые для исследования небесных тел, имеют антенны больших размеров и мощные передатчики. Например, радиолокационная установка центра дальней космической связи в Крыму имеет антенну с диаметром главного зеркала 70 м и оборудована передатчиком мощностью несколько сотен кВт на волне 39 см. Энергия, направляемая к цели, концентрируется в луче с углом раскрыва 25′.
Из радиолокации Венеры, уточнено значение астрономической единицы: 1 а. е.=± 6м ≈149,6 млн. км., что соответствует Р¤=8,7940″. Так проведенная в Советском Союзе обработка данных радиолокационных измерений расстояния до Венеры в 1962-75гг (один из первых удачных экспериментов по радиолокации Венеры провели сотрудники Института радиотехники и электроники АН СССР в апреле 1961г антенной дальней космической связи в Крыму, l= 39 см) дала значение 1 а. е. =,9 ±0,9 км. XVI Генеральная ассамблея Международного астрономического союза приняла в 1976г значение 1 а. е.=±2 км. Путем радиолокации с КА определяется рельеф поверхности планет и их спутников, составляются их карты.
Основные антенны, используемые для радиолокации планет:
= Евпатория, Крым, диаметр 70 м, l= 39 см;
= Аресибо, Пуэрто Рико, диаметр 305 м, l= 12.6 см;
= Голдстоун, Калифорния, диаметр 64 м, l = 3.5 и 12.6 см, в бистатическом режиме прием осуществляется на системе апертурного синтеза VLA.

Читайте также:  Способы передачи данных последовательный

С изобретение Квантовых генераторов (лазера) в 1969г произведена первая лазерная локация Луны (зеркало для отражения лазерного луча на Луне установили астронавты США «Ароllо — 11» 20.07.69г), точность измерения составили ±30 см. На рисунке показано расположение лазерных уголковых отражателей на Луне, установленных при полете КА «Луна-17, 21» и «Аполлон — 11, 14, 15». Все, за исключением отражателя Лунохода-1 (L1), работают и сейчас.
Лазерная (оптическая) локация нужна для:
-решение задач космических исследований.
-решение задач космической геодезии.
-выяснения вопроса о движении земных материков и т. д.

2) Определение размеров небесных тел.

а) Определение радиуса Земли.

АОВ=n=φА-φВ(разность географических широт)
е=АВ — длина дуги вдоль меридиана
т. к. е10=е/n=2πR/3600 ,то [форм 21].

Аналогичным способом в 240г до НЭ (рисунок выше) определяет радиус Земли географ Эратосфен. L/800=3600/7,20

б) Определение размера небесных тел.

Р-параллакс.
ρ — угловой радиус светила
Из прямоугольных треугольников дважды используя формулу R=r. sin ρ (чертёж) получим
[форм. 22]

III. Закрепление материала

Пример 7 (стр. 51). CD — «Red Shift 5.1″ — Определить на данный момент удаленность нижних (планет земной группы, верхних планет, планет гигантов) от Земли и Солнца в а. е. 9,6″, а горизонтальный параллакс 18». Чему равен линейный радиус Марса? Каково расстояние между лазерным отражателем на Луне и телескопом на Земле, если импульс возвратился через 2,43545с? Расстояние от Земли до Луны в перигее 363000км, а в апогее 405000км. Определите горизонтальный параллакс Луны в этих положениях. Тест с картинками по главе 2. Дополнительно, для тех кто сделал — кроссворд.

Планета СС Ближайшая к Земле точка орбиты ИСЗ Ученый, создатель гелиоцентрической системы мира Угол под которым со светила виден R Земли Ученый, направивший первым в 1609г телескоп на небо Сторона горизонта

1) Что такое параллакс?

2) Какими способами можно определить расстояние до тел СС?

3) Что такое базис? Что принимается за базис для определения расстояния до тел СС?

4) Как зависит параллакс от удаленности небесного тела?

5) Как зависит размер тела от угла?

Домашнее задание: §11; вопросы и задания стр. 52, стр. 52-53 знать и уметь. Повторить полностью вторую главу. СР№6 , ПР№4.
Можно задать по данному разделу подготовить кроссворд, опросник, реферат об одном из ученых-астрономов или истории астрономии (один из вопросов или направлений).
Можно предложить практическую работу «Определение размера Луны».
В период полнолуния, используя две соединенные под прямым углом линейки, определяются видимые размеры лунного диска: поскольку треугольники KCD и КАВ подобны, из теоремы о подобии треугольников следует, что: АВ/СD=KB/KD. Диаметр Луны АВ = (CD. KB)/KD. Расстояние от Земли до Луны берёте из справочных таблиц (но лучше, если сумеете вычислить его сами).

Источник

CheckTests

Создай свой урок с применением ПК

§ 10. Определение размеров небесных тел и расстояний до них в Солнечной системе

1. Определение размеров Земли. Первый известный науке метод определения размеров Земли применил греческий учёный Эратосфен. Он выбрал два города, лежащих на одном и том же географическом меридиане земного шара, — Александрию (01) и Сиену (02) (рис. 41). Из рисунка видно, что если обозначить длину дуги меридиана 0102 через l, а её угловое значение через n (в градусах), то длина дуги 1° меридиана l0 будет равна:

а длина всей окружности меридиана:

где R — радиус земного шара. Отсюда

Длина дуги меридиана между выбранными на земной поверхности точками 01 и 02 в градусах равна разности географических широт этих точек, т. е. n = Δφ = φ1 — φ2.

Рисунок 41 — Вычисление радиуса Земли

Длина дуги l — расстояние между Александрией и Сиеной — была хорошо известна. Угол n Эратосфен измерил, используя то обстоятельство, что Сиена лежит на тропике Рака и в день летнего солнцестояния Солнце в полдень здесь наблюдалось в зените. А в Александрии Солнце до зенита не доходило и шест, врытый перпендикулярно в землю, отбрасывал тень. Измерив длину этой тени, Эратосфен получил значение n = 7,2° и длину окружности L примерно 45 тыс. км (современное значение 40 тыс. км).

Современная геодезия располагает точными методами для измерения расстояний на земной поверхности. Определение расстояния l между точками 01 и 02 (см. рис. 41) затруднено из-за естественных препятствий (гор, рек, лесов и т. п.).

Рисунок 42 — Метод триангуляции

Поэтому длина дуги l определяется путём вычислений, требующих измерения только сравнительно небольшого расстояния — базиса и ряда углов.

Этот метод разработан в геодезии и называется триангуляцией (лат. triangulum — треугольник).

Суть его состоит в следующем. По обе стороны дуги O1О2, длину которой необходимо определить, выбирается несколько точек А, В, С, … на взаимных расстояниях до 50 км с таким расчётом, чтобы из каждой точки были видны по меньшей мере две другие точки (рис. 42).

Геодезическая вышка. На ее вершине укреплен цилиндр, на который при измерениях наводят теодолит для измерения углов.

Длину базиса очень тщательно измеряют специальными мерными лентами. Измеренные углы в треугольниках и длина базиса позволяют по тригонометрическим формулам вычислить стороны треугольников, а по ним — длину дуги O1О2 с учётом её кривизны.

В России с 1816 по 1855 г. под руководством В. Я. Струве была измерена дуга меридиана длиной 2800 км. В 30-е гг. ХХ в. высокоточные градусные измерения были проведены в СССР под руководством профессора Ф. Н. Красовского.

Триангуляционные измерения показали, что длина дуги 1° меридиана не одинакова под разными широтами: около экватора она равна 110,6 км, а около полюсов — 111,7 км, т. е. увеличивается к полюсам.
Истинная форма Земли не может быть представлена ни одним из известных геометрических тел. Поэтому в геодезии и гравиметрии форму Земли считают геоидом , т. е. телом с поверхностью, близкой к поверхности спокойного океана и продолженной под материками.

В настоящее время созданы триангуляционные сети со сложной радиолокационной аппаратурой, установленной на наземных пунктах, и с отражателями на геодезических искусственных спутниках Земли, что позволяет точно вычислять расстояния между пунктами. Значительный вклад в развитие космической геодезии внёс уроженец Беларуси — известный геодезист, гидрограф и астроном И. Д. Жонголович. На основе изучения динамики движения искусственных спутников Земли он уточнил сжатие нашей планеты и несимметричность Северного и Южного полушарий.

Рисунок 43 — Горизонтальный параллакс светила

2. Определение расстояний методом горизонтального параллакса. Кажущееся смещение светила, обусловленное перемещением наблюдателя, называется параллактическим смещением или параллаксом светила. Параллактические смещения светила тем больше, чем ближе оно к наблюдателю и чем больше перемещение наблюдателя.

Определение расстояний до тел Солнечной системы основано на измерении их горизонтальных параллаксов. Угол р, под которым со светила виден радиус Земли, перпендикулярный к лучу зрения, называется горизонтальным параллаксом (рис. 43). Чем больше расстояние до светила, тем меньше угол р.

Зная горизонтальный параллакс светила, можно определить его расстояние D = SO от центра Земли. Расстояние до светила

\( D=\frac \) , где RЕ — радиус Земли. Приняв RЕ за единицу, можно выразить расстояние до светила в земных радиусах.

Например, параллакс Солнца р ¤ = 8,794″. Параллаксу Солнца соответствует среднее расстояние от Земли до Солнца, примерно равное 149,6 млн км. Это расстояние принимается за одну астрономическую единицу (1 а. е.). В астрономических единицах удобно измерять расстояния между телами Солнечной системы.

При малых углах sin p » p, если угол р выражен в радианах. Если угол р выражен в секундах дуги, то вводится множитель

где 206 265 — число секунд в одном радиане. Тогда

Эта формула значительно упрощает вычисление расстояния D до светила по известному параллаксу p .

3. Радиолокационный метод. Для определения расстояний до тел Солнечной системы используются наиболее точные методы измерений — радиолокационные измерения . Измерив время t, необходимое для того, чтобы радиолокационный импульс достиг небесного тела, отразился и вернулся на Землю, вычисляют расстояние D до этого тела по формуле:

где с — скорость света, равная примерно 3·10 8 м/с.

С помощью радиолокации определены наиболее точные значения расстояний до тел Солнечной системы, уточнены расстояния между материками Земли, более точно определена астрономическая единица (1 а. е. = 149 597 870 ± 2 км).

Методы лазерной локации (использующие, например, специальные уголковые отражатели, доставленные на Луну) позволили измерить расстояния от Земли до Луны с точностью до нескольких сантиметров.

Рисунок 44 — Определение линейных размеров тел Солнечной системы

4. Определение размеров тел Солнечной системы. При наблюдениях небесных тел Солнечной системы можно измерить угол, под которым они видны наблюдателю с Земли. Зная угловой радиус светила р (рис. 44) и расстояние D до светила, можно вычислить линейный радиус R этого светила по формуле R = D ⋅ sin ρ.

По определению горизонтального параллакса, радиус Земли RÅ виден со светила под углом р, тогда получим:

Так как значения углов r и р малы, окончательно имеем:

Определение размеров небесных тел таким способом возможно только тогда, когда видны их диски.

Главные выводы

Контрольные вопросы и задания
1. Каким образом греческий ученый Эратосфен определил размеры Земли?
2. Как определяют длину дуги меридиана триангуляционным методом?
3. Что понимают под горизонтальным параллаксом?
4. Как определить расстояние до светила, зная его горизонтальный параллакс?
5. Что такое астрономическая единица?
6. В чем состоит радиолокационный метод определения расстояний до небесных тел?
7. На каком расстоянии от Земли находится небесное тело, если его горизонтальный параллакс равен 1ʹ?
8. Определите линейный радиус Луны, если в ходе наблюдений стало известно, что ее горизонтальный параллакс в это время равен 57’, а угловой радиус — 15,5ʹ. Радиус Земли принять равным 6400 км.
9. Оцените расстояние от Солнца до Меркурия, если его наибольшая элонгация равна 28°.
10. Определите диаметр Меркурия, если при прохождении по диску Солнца его угловой диаметр оказался 11,0″, а горизонтальный параллакс в этот момент равен 14,3″.

Источник

Читайте также:  Самогон способы домашней очистки
Оцените статью
Разные способы