Способы определения расстояния до тел солнечной системы их размеров

БИЛЕТ № 6. Способы определения расстояний до тел Солнечной системы и их размеров

  1. Способы определения расстояний до тел Солнечной системы и их размеров.

Сперва определяется расстояние до какой-нибудь доступной точки. Это расстояние называется базисом. Угол, под которым из недоступного места виден базис, называют параллаксом. Горизонтальным параллаксом называют угол, под которым с планеты виден радиус Земли, перпендикулярный лучу зрения.

p² – параллакс, r² – угловой радиус, R – радиус Земли, r – радиус светила.

Радиолокационный метод.Он заключается в том, что на небесное тело посылают мощный кратковременный им­пульс, а затем принимают отраженный сигнал. Скорость распространения радиоволн равна скорости света в вакууме: известна. Поэтому если точно измерить время, которое потребовалось сигналу, чтобы дойти до небесного тела и возвратиться обратно, то легко вычислить искомое расстояние.

Радиолокационные наблюдения позволяют с большой точностью определять расстояния до небесных тел Солнечной системы. Этим методом уточнены расстояния до Луны, Венеры, Меркурия, Марса, Юпитера.

Лазерная локация Луны.Вскоре после изобретения мощных источников светового излучения — оптических квантовых генераторов (лазеров) — стали проводиться опыты по лазерной локации Луны. Метод лазерной локации анало­гичен радиолокации, однако точность измерения значи­тельно выше. Оптическая локация дает возможность опреде­лить расстояние между выбранными точками лунной и зем­ной поверхности с точностью до сантиметров.

Для определения размеров Земли определяют расстояние между двумя пунктами, расположенными на одном меридиане, затем длину дуги l, соответствующей 1° —n.

Для определения размеров тел Солнечной системы можно измерить угол, под которым они видны земному наблюдателю – угловой радиус светила r и расстояние до светила D.

Учитывая p0 – горизонтальный параллакс светила и, что углы p0 и r малы,

  1. Определение светимости звезды на основе данных о ее размерах и температуре.

Источник

Способы определения расстояний до тел Солнечной системы и их размеров.

Сперва определяется расстояние до какой-нибудь доступной точки. Это расстояние называется базисом. Угол, под которым из недоступного места виден базис, называют параллаксом. Горизонтальным параллаксом называют угол, под которым с планеты виден радиус Земли, перпендикулярный лучу зрения.

p² – параллакс, r² – угловой радиус, R – радиус Земли, r – радиус светила.

Радиолокационный метод.Он заключается в том, что на небесное тело посылают мощный кратковременный им­пульс, а затем принимают отраженный сигнал. Скорость распространения радиоволн равна скорости света в вакууме: известна. Поэтому если точно измерить время, которое потребовалось сигналу, чтобы дойти до небесного тела и возвратиться обратно, то легко вычислить искомое расстояние.

Радиолокационные наблюдения позволяют с большой точностью определять расстояния до небесных тел Солнечной системы. Этим методом уточнены расстояния до Луны, Венеры, Меркурия, Марса, Юпитера.

Лазерная локация Луны.Вскоре после изобретения мощных источников светового излучения — оптических квантовых генераторов (лазеров) — стали проводиться опыты по лазерной локации Луны. Метод лазерной локации анало­гичен радиолокации, однако точность измерения значи­тельно выше. Оптическая локация дает возможность опреде­лить расстояние между выбранными точками лунной и зем­ной поверхности с точностью до сантиметров.

Для определения размеров Земли определяют расстояние между двумя пунктами, расположенными на одном меридиане, затем длину дуги l, соответствующей 1° —n.

Для определения размеров тел Солнечной системы можно измерить угол, под которым они видны земному наблюдателю – угловой радиус светила r и расстояние до светила D.

Учитывая p0 – горизонтальный параллакс светила и, что углы p0 и r малы,

3. Оборудование: стеклянная пластина, булавки, линейка, транспортир. Вывод согласно измерениям.

Источник

Способы определения расстояния до тел солнечной системы их размеров

§ 11. ОПРЕДЕЛЕНИЕ РАССТОЯНИЙ ДО ТЕЛ СОЛНЕЧНОЙ СИСТЕМЫ И РАЗМЕРОВ ЭТИХ НЕБЕСНЫХ ТЕЛ

1. Определение расстояний по параллаксам светил. До­пустим, что из точки А нужно определить расстояние до не­доступной точки С (рис. 24). Для этого прежде всего тща­тельно измеряется расстояние до какой-нибудь доступной точки В. Отрезок АВ называется базисом. Далее из то­чек А и В угломерным геодезическим инструментом измеряют CAB и АВС. Таким образом, в треугольнике ABC известны углы и сторона АВ = с. Остальные элементы косо­угольного треугольника ABC можно вычислить по формулам тригонометрии.

Читайте также:  Дистанционный способ продажи товаров виды

Рис. 24. Определение расстояния до недоступного предмета

Рис. 25. Горизонтальный параллакс светила.

УголАСВ, под которым из недоступного места виден ба­зис, называется параллаксом . При данном расстоя­нии до предмета параллакс тем больше, чем больше базис.

В пределах Солнечной системы в качестве базиса исполь­зуют экваториальный радиус Земли. Рассмот­рим прямоугольный треугольник (рис. 25), вершинами кото­рого являются центр светила О1, центр Земли О и точка, изображающая местоположение наблюдателя К. Как следует из чертежа, наблюдатель видит светило на горизонте. Угол р0, под которым со светила, находящегося на горизонте, был бы виден экваториальный радиус Земли, называется горизонтальным экваториальным парал­лаксом светила. Конечно, со светила никто не наблю­дает радиус Земли, а горизонтальный параллакс определяют по измерениям высоты светила в момент верхней кульмина­ции из двух точек земной поверхности, находящихся на одном географическом меридиане и имеющих известные гео­графические широты.

Если горизонтальный параллакс ( р0) найден, то расстоя­ние до светила вычисляется по формуле:

(19)

где D — расстояние от центра Земли до центра какого-ни­будь тела Солнечной системы; — экваториальный радиус Земли (сущность способа определения радиуса Земли будет изложена в § 12); р0 — горизонтальный параллакс светила.

Наибольший горизонтальный параллакс имеет ближай­шее к Земле небесное тело — Луна ( p ( = 57’02′). Параллаксы планет и Солнца составляют всего лишь несколько секунд дуги ( = 8,79′). Поскольку углы р0 малы, то их синусы можно заменить самими углами, т.е. sin р0 ≈ р0, если вели­чина угла выражена в радианах. Но р0 обычно выражено в секундах дуги, поэтому так как 1 радиан = 57,3° = 3438′ = 206265′. Учитывая это, формулу (19) мож­но записать в виде:

(20)

здесь р0 выражено в секундах дуги, а D в зависимости от — либо в километрах (если — в километрах), либо в радиусах Земли.

Пример 6. Зная горизонтальный параллакс Луны и эква­ториальный радиус Земли ( 6378 км ), найти расстояние от Земли до Луны.

2. Радиолокационный метод. Он заключается в том, что на небесное тело посылают мощный кратковременный им­пульс, а затем принимают отраженный сигнал. Скорость распространения радиоволн равна скорости света в вакууме: с = 299792458 м/с. Поэтому если точно измерить время, которое потребовалось сигналу, чтобы дойти до небесного тела и возвратиться обратно, то легко вычислить искомое расстояние. Идея непосредственного метода определения рас­стояния до небесных тел (в частности, расстояния между Землей и Луной) была обоснована отечественными физиками Л. И. Мандельштамом и Н. Д. Папалекси.

Радиолокационные наблюдения позволяют с большой точностью определять расстояния до небесных тел Солнечной системы. Этим методом уточнены расстояния до Луны, Венеры, Меркурия, Марса, Юпитера.

Для космических полетов необходимо с большой точ­ностью определять значение астрономической единицы. Еще сравнительно недавно астрономическая единица была из­вестна с точностью до нескольких десятков тысяч километ­ров. Из радиолокационных наблюдений Венеры получено следующее значение астрономической единицы:

1 а. е. = (149 597 868 ± 0,7) км.

Округленному значению астрономической единицы ( 149600 000 км ) соответствует параллакс Солнца = 8,7940′.

3*. Лазерная локация Луны. Вскоре после изобретения мощных источников светового излучения — оптических квантовых генераторов (лазеров) — стали проводиться опыты по лазерной локации Луны. Метод лазерной локации анало­гичен радиолокации, однако точность измерения значи­тельно выше. Оптическая локация дает возможность опреде­лить расстояние между выбранными точками лунной и зем­ной поверхности с точностью до сантиметров. Такая высо­кая точность нужна для решения ряда задач космической геодезии, выяснения вопросов о движении земных конти­нентов, дальнейшего развития космических исследований.

Рис. 26. Вычисление радиуса Земли.

4. Определение размеров тел Солнечной системы. Прежде всего познакомимся с методом определения радиуса Земли. Принимая Землю за шар радиуса , измеряют линейное ( l , например, в километрах) и угловое ( n , например, в градусах) расстояния между двумя пунктами земной по­верхности, расположенными на одном географическом мери­диане (рис. 26). Затем вычисляют длину дуги, соответствую­щую 1° этого меридиана, а потом и радиус Земли. Пусть l — длина дуги АВ, а центральный угол, опирающийся на эту дугу и равный разности географических широт точек А и В, AOB = п (О — центр Земли), тогда длина дуги 1° меридиана будет равна а значит,

(21)

При наблюдениях небесных тел Солнечной системы можно измерить угол, под которым они видны земному на­блюдателю. Зная этот угловой радиус светила ρ и расстояние до светила D , можно вычислить линейный ра­диус R (рис. 27):

Рис. 27. Определение линейных размеров тел Солнечной системы.

(22)

Учитывая формулу (19), получим:

(22′)

А так как углы и малы, то

(23)

Источник

Определение расстояний и размеров тел в Солнечной системе

Урок 14. Астрономия 11 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Определение расстояний и размеров тел в Солнечной системе»

Вы уже знаете, что ещё в Древней Греции учёными и мыслителями было установлено, что наша планета не является плоской, а имеет шарообразную форму. Представление о Земле как о шаре, который свободно, без всякой опоры находится в космическом пространстве, является одним из величайших достижений древнего мира.

Первый известный науке метод определения размеров Земли применил греческий учёный Эратосфен, живший в Египте. Его идея была достаточно проста. Итак, Эратосфен выбрал два города — Александрию и Сиену (ныне Асуан) — расположенных на одном земном меридиане.

Далее он обозначил длину дуги меридиана между двумя городами через l, а её угловое значение в градусах как п.

Тогда длина дуги в 1 о выбранного меридиана равна

С другой стороны, он знал, что длина окружности равна: L = 2πR.

Приравняв правые части последних двух уравнений, легко получить искомый радиус земного шара:

Теперь было необходимо определить длину дуги меридиана в градусной мере. Очевидно, что она равна разности географических широт Александрии и Сиены. Так вот, чтобы определить эту разность Эратосфен придумал хитрый способ. Он знал, что в полдень дня летнего Солнцестояния в Сиене Солнце находится в зените и освещает дно самых глубоких колодцев. А в Александрии Солнце до зенита не доходит. Поэтому шест, вбитый вертикально в землю должен отбрасывать тень. Измерив длину этой тени можно легко определить искомую длину дуги меридиана, которая у Эратосфена оказалась равной 7,2 о .

Ну а расстояние между Александрией и Сиеной ему было хорошо известно: оно составляло пять тысяч греческих стадий.

Подставив все данные в формулу для длины окружности меридиана, Эратосфен получил значение в 250 000 стадий.

Стадий — это весьма неоднозначная единица измерения расстояния. Но, как правило, за стадий принимали расстояние, которое проходит легковооружённый воин за промежуток времени от появления первого луча солнца при его восходе до того момента, когда весь солнечный диск окажется над горизонтом.

Однако если учесть, что расстояние между Александрией и Асуаном по прямой примерно равно 844 километрам, то можно полагать, что одна стадия примерно равна 169 метрам.

Тогда искомая длина всей окружности меридиана равна 42 250 километрам, что совсем не плохо для того времени.

Современная наука располагает более точными способами измерения расстояний на земной поверхности. Одним из них является метод триангуляций, основанный на явлении параллактического смещения.

Параллактическое смещение — это изменение направления на предмет при перемещении наблюдателя. С его помощью можно измерить расстояние на основе измерения длины одной из сторон (базиса) и двух прилегающих к ней углов в треугольнике.

Суть метода триангуляций состоит в следующем. По обе стороны дуги, длину которой нужно измерить, выбирается несколько точек на расстоянии не более 50 километров друг от друга, на которых устанавливаются геодезические вышки. При этом из каждой точки должны быть видны по крайней мере две другие точки. Далее тщательным образом измеряется длина базиса (с точностью до одного миллиметра). После этого с вершины вышки при помощи теодолита измеряются углы между направлениями на два-три соседних пункта. Измерив углы в треугольнике, одной из сторон которого является базис, геодезисты получают возможность вычислить длину двух других его сторон по известным тригонометрическим формулам. Проводя затем измерение углов из пунктов, расстояние между которыми уже вычислено, можно узнать длину очередных двух сторон и так далее. Затем, по вычисленным сторонам, определяется искомая длина дуги.

В XVIII веке использование триангуляционных измерений в экваториальных широтах и вблизи северного полярного круга, показало, что длина дуги в 1 о меридиана не одинакова и увеличивается к полюсам. Из этого следовало, что наша планета не является идеальным шаром и её полярный радиус почти на 21 километр короче экваториального. Поэтому в геодезии и форму Земли считают геоидом, то есть телом с поверхностью, близкой к поверхности спокойного океана и продолженной под материками.

В настоящее время форму Земли принято характеризовать следующими физическими характеристиками:

· полярное сжатие — 0,0033528;

· экваториальный радиус — 6378,1 км;

· полярный радиус — 6356,8 км;

· средний радиус — 6371,0 км;

· и длина окружности экватора — 40 075,017 км.

Долгое время загадкой для многих астрономов являлось истинное расстояние от Земли до Солнца. Измерить его смогли лишь во второй половине XVIII века, когда был впервые определён горизонтальный параллакс Солнца. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является её радиус.

Горизонтальным параллаксом называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения.

Зная горизонтальный параллакс светила, можно, по известным тригонометрическим соотношениям, определить его расстояние от центра Земли:

Очевидно, что чем дальше расположено светило, те меньше его горизонтальный параллакс. Например, наибольший параллакс, в среднем 57ʹ, имеет спутник Земли — Луна. У Солнца он значительно меньше и примерно составляет 8,794ʹʹ. Такому параллаксу соответствует среднее расстояние от Земли до Солнца, примерно равное 149,6 миллиона километров.

На одном из прошлых уроков мы говорили о том, что это расстояние в астрономии принимается за одну астрономическую единицу. С её помощью удобно измерять расстояния между телами в Солнечной системе.

Но вернёмся к нашей формуле. Итак, из геометрии вам должно быть известно, что при малых значениях угла его синус примерно равен самому углу, выраженному в радианах. Если учесть, что в одном радиане содержится 206 265ʹʹ, то легко можно получить формулу, удобную для вычислений:

Для примера, давайте с вами определим расстояние от Земли до Юпитера в момент противостояния, если его горизонтальный параллакс был равен 2,2ʹʹ. Радиус Земли примем равным 6371 километру.

Эту же задачу можно было решить несколько иначе.

В настоящее время для более точного определения расстояний до тел в Солнечной системе применяется более точный метод измерений — радиолокационный. Измерив время, необходимое для того, чтобы радиолокационный импульс достиг небесного тела, отразился и вернулся на Землю, вычисляют расстояние до этого тела по формуле:

где с — это скорость света в вакууме.

С разработкой методов определения расстояний до тел в Солнечной системе учёным не составило большого труда придумать и способ определения их размеров. В частности, при наблюдениях небесного тела Солнечной системы с Земли можно измерить угол, под которым оно видно наблюдателю, то есть его угловой размер (или угловой диаметр), а, следовательно, и угловой радиус.

А зная угловой радиус и расстояние до светила, можно вычислить его линейный радиус:

.

Только в этой формуле угловой радиус должен быть выражен в радианах.

Если в записанное уравнение подставить формулу для определения расстояний методом горизонтального параллакса и упростить её, используя тот факт, что значения углов ρ и р малы, то получим формулу, по которой можно определять линейные размеры небесных тел:

Но помните, пользоваться ей можно тогда, когда видны диски светил.

Для примера давайте решим с вами такую задачу. При наблюдении прохождения Меркурия по диску Солнца определили, что его угловой радиус равен 5,5’’, а горизонтальный параллакс — 14,4’’. Чему равен линейный радиус Меркурия?

Источник

Читайте также:  Текстурная паста способы нанесения
Оцените статью
Разные способы