Способы определения превышений точек

Измерение превышений. Способы нивелирования.

На местности закреплены точки А и В. Уровенная поверхность — начальная (1). У.п. т.А (2) и т.В (3). Построены отвесные линии. Расстояние от начальной уровенной поверхности до т.А – высота точки А, а расстояние по отвесной линии от начальной у.п. до т.В – есть высота т.В. Расстояние между у.п. точек – есть превышение (h). Численное значение высоты – отметка. Измерять превышение необходимо с целью получения отметок точек земной поверхности. Знание отметок (и высот) позволяет решить следующие практические задачи: построить рельеф местности; прикладные задачи строительства; задачи трассирования (построение профилей трасс); научные задачи представления фигуры Земли. На территории России за начало счета высот при построении нивелирных сетей принимается Балтийская система высот, ведет от нуля Кронштадского футштока.

Существуют следующие способы определения превышений (нивелирования): 1) геометрическое нивелирование; принцип: визирный луч (ось) проходит параллельно у.п., визирная ось горизонтальна в момент измерения превышений, точность данного способа определения отметок это мм и десятые доли; 2) тригонометрическое нив.; наклонный визирный луч (ось), точность сантиметровая; 3) барометрическое нив.; принцип зависимости атмосферного давления от высоты точки местности, точность дм; 4) гидростатическое нив.; высота столба жидкости в сообщающихся сосудах, точность мм; 5) автоматическое нив.; способ основан на определении превышений путем установки прибора на движущийся предмет, точность мм, см. В настоящее время используются первые 2.

13. Сущность и виды геометрического нивелирования.

Метод определения высот точек местности и превышений между ними называется нивелированием. Различают геометрическое, тригонометрическое, барометрическое, механическое и гидростатическое нивелирование. Геометрическое нивелирование-это нивелирование горизонтальным лучом визирования. Сущность геометрического нивелирования сводится к определению превышения точки B над точкой А. (Нивелирование выполняется на небольших участках земной поверхности, поэтому у.п. можно принять за плоскость) (рис) горизонтальным лучом визирования, используя нивелир и рейки. Нивелир — геодезический прибор, у которого в момент отсчета по рейке визирная ось устанавливается в горизонтальное положение. Пусть при наведении зрительной трубы на рейку, установленную в точке А, получим отсчет по рейку a, а при визировании на рейку в точку В – отсчет b; тогда искомое превышение h=a-b.

Если условно принять точку А задней, а точку В передней, то превышение равно взгляд назад минус взгляд вперед. Если высота точки А над уровенной поверхностью известна и равна HA, то высоту точки B легко определить по формуле: HB=HA+h. То есть высота последующей точки хода равна высоте предыдущей плюс превышение. Высота горизонта прибора Hr=HA+a

или Hr=HB+b. Т.е. высота горизонта прибора равна высоте точки плюс отсчет по рейке, установленной в этой точке. Различают следующие способы геометрического нивелирования: нивелирование «из середины», нивелирование «вперед» и сложное (последовательное) нивелирование. Основным способом геометрического нивелирования является нивелирование «из середины» (см. рис.73), когда превышение определяют по формуле h=a-b.

В способе нивелирования «вперед» (рис 74) превышение определяется по формуле h=i-b. Способ нивелирования «вперед» применяется реже, чем способ нивелирования «из середины» (в основном при выносе высот точек в натуру). При нивелировании «вперед» трудно измерять высоту прибора с необходимой точностью и темпы работ значительно снижаются. Кроме того, при нивелировании «вперед» (как будет доказано далее) необходимо учитывать влияние кривизны Земли и вертикальной рефракции (влияние искривления визирного луча в вертикальной плоскости из-за неодинаковой плотности слоев атмосферы).

Читайте также:  Способы использования объектов интеллектуальной собственности воспроизведение

Когда требуется определить разность высот hAB между удаленными друг от друга точками А и В, применяют последовательное (сложное) нивелирование (рис. 75).

Точки установки реек 1,2….n-1, общие для двух смежных станций прибора, называются связующими точками. В этих точках рейка сначала является передней, затем – задней.

Источник

Способы определения превышений и отметок точек

Раздел VII. НИВЕЛИРОВАНИЕ

При решении многих задач требуется знать превышения между точками и отметки этих точек. Существуют следующие методы определения превышений.

1. Геометрическое нивелирование, при котором превышение между точками получают как разность отсчетов по рей­кам при горизонтальном положении визирной оси нивелира. Этот метод является наиболее простым и точным, но позволяет с
одной постановки прибора получить превышение не более длины рейки, поэтому при больших превышениях (в горной и особенно высокогорной местности) его эффективность и точностью падают, так как, например, для определения превышения в 1 км требуется около 500 станций.

2. Тригонометрическое нивелирование, когда превышение между точками определяют по измеренным вертикальным углам и расстояниям между точками (горизонтальное проложение между точками с известными координатами). Тригонометрическое нивелирование позволяет с одной станции определить практически любое превышение между точками, имеющими взаимную видимость, но его точность ограничена из-за недостаточно точного учета влияния на величины вертикальных углов оптической рефракции и уклонений отвесных линий, особенно в горной местности.

3. Барометрическое нивелирование, основанное на использовании зависимости между атмосферным давлением и высотой точек на местности. В этом методе не требуется взаимная видимость между точками, но точность барометрического нивелирования сравнительно невысока из-за недостаточно точного учета влияния многих факторов, связанных с физикой атмосферы и другими причинами.

4. Гидростатическоенивелирование, основанное на, свойстве жидкости в сообщающихся сосудах находиться на одном уровне. Этот метод имеет высокую точность, позволяет определять превышения между точками при отсутствии взаимной видимости, но определяемые превышения не должны быть более
размера трубок, соединенных шлангами.

5. Автоматическоенивелирование. Выполняется ниве­лирами-автоматами, установленными на автомашинах, велоси­педах и т.п., которые обычно вычерчивают профиль нивелируе­мой линии местности. Отметки точек можно определить быстро,
но с невысокой точностью.

6. Стереофотограмметрический метод позволяет опреде­лить превышения путем обработки пары снимков, полученных в двух точках на расстоянии базиса фотографирования так, чтобы на части каждого из снимков была изображена одна и та же ме­стность. Этот метод позволяет бесконтактным способом опреде­лять превышения между точками и другие характеристики мест­ности, точность метода зависит от масштаба снимков, способа их обработки, точности приборов и других причин.

7. Аэрорадионивелирование связано с определением пре­вышений путем измерения высоты полета (обычно высоты фото­графирования) летательного аппарата радиовысотомером и из­мерение разности высот точек трассы полета (точек, в которых выполняют фотографирование) статоскопом — по разностям дав­лений.

8. Определение превышений по результатам спутнико­вых измерений. Спутниковые системы ГЛОНАСС — ГЛОбальная НАвигационная Спутниковая Система (Россия) и GPS (США) позволяют определять пространственные координаты точек местности в автономном режиме (с точностью около 1м) и в дифференциальном, т.е. относительно точек с известными координатами, с точностью до сантиметров и точнее.

Источник

Тригонометрическое нивелирование: методы, способы, схема

Является одним из способов определения превышения в вертикальной плоскости между разными точками местности или сооружений. Для этого применяются геодезические приборы теодолиты и тахеометры, обладающие конструктивными способностями наклонного визирования. В самом его названии заложена сущность метода, основанная в применении части математического аппарата вычислений с использования набора тригонометрических функций после выполнения полевых линейных и угловых измерений.

Читайте также:  Проходка восстающих обычным способом

Технологическая схема

Суть технологии измерения одиночного превышения между двумя точками способом тригонометрического нивелирования заключается в следующем. На одном из геодезических пунктов на местности (Рис.1.Схема тригонометрического нивелирования) устанавливается современный теодолит (электронный тахеометр). Конечно, имеется в виду точное выставление прибора над центром (центрирование) и приведение его в отвесное положение (горизонтирование). Сразу после этого производится замер рулеткой высоты инструмента (обычно обозначается символом «i»). Она обозначает кратчайшее расстояние между центрами точки стояния и теодолита (тахеометра). Соответствующая запись фиксирует это в полевом журнале или вводится в экран измерений электронного тахеометра.

Рис.1.Схема тригонометрического нивелирования

Над второй точкой выставляется визир, например в виде рейки при измерениях теодолитом иди вехи с маркой и отражателем при наблюдениях тахеометром. Высота визирования (обозначается символом «v») может измеряться по отсчету на рейке или рулеточным замером между центрами точки съемки и маркой с отражателем на вехе. Как правило, на фирменных вешках нанесена сантиметровая шкала для удобства определения ее высоты. Высота визирования также заносится в журналы измерений, как электронный в тахеометре, так и бумажный.

В дальнейшем осуществляются ориентирование на съемочной станции и измерение горизонтального, затем вертикального улов на точку съемки и наклонного расстояния (S) с получением при необходимости горизонтального проложения (d).

Вычисление превышения (h) между точками можно вычислить из равенства:

  • S — наклонное расстояние;
  • d — горизонтальное проложение;
  • sinv — синус угла наклона между тахеометром и центром призмы;
  • tgv — тангенс угла наклона;
  • i — высота инструмента;
  • v — высота (цели) визирования.

Метод тригонометрического нивелирования можно считать неотъемлемой частью технологического процесса при производстве топографических тахеометрических съемок. Правда такой способ считается мало точным.

Методы тригонометрического нивелирования

Как правило, следует это обязательно отметить, применяются при перепадах высот местности, где геометрическое нивелирование не рекомендовано и экономически не целесообразно. В современных условиях можно выделить из них всего три вида:

  • одностороннее нивелирование «вперед»;
  • нивелирование «из середины»;
  • двухстороннее нивелирование.

Первый из перечисленных способов практически уже был рассмотрен выше. Он является наименее точным и используется в топографии. Но с применением точных электронных тахеометров при выполнении крупномасштабных топосъемок одновременно прокладывают и геодезическое обоснование, с пунктов которого ведут съемочные работы. С их использованием происходит значительное снижение временных затрат и точность работ имеет существенный запас надежности. Так в соответствии с техническими и фактическими характеристиками электронные приборы (тахеометры) имеют среднеквадратические погрешности однократного измерения горизонтального угла и отдельно вертикального не более пяти-шести секунд. Среднеквадратическая погрешность однократного измерения длины сторон имеют значения от двух до шести миллиметров в зависимости от расстояний и цели визирования (на отражательную пленку или призменный отражатель). При тригонометрическом нивелировании, как правило, все измерения, а именно:

  • высоты инструмента;
  • высоты визирования (цели);
  • вертикальные углы;
  • длины сторон

измеряются дважды (в прямом и обратном направлении) и при положении трубы при двух положениях круга (круге право и круге лево).

Фактические невязки должны быть естественно в пределах допустимых (fдоп), которые вычисляются по формуле:

S — длина сторон, измеряющаяся в метрах;

n — количество сторон.

Метод из середины

Является очень похожим по технологии исполнения на такой же способ геометрического нивелирования. Сам геодезический прибор (тахеометр) устанавливается ориентировочно посередине между точками наблюдения в зависимости от расстояния между ними в пределах 5 — 15метров.

В качестве визирных целей могут использоваться различные принадлежности:

  • рейки, при не больших расстояниях между прибором и пунктами съемки (до 70 метров);
  • вешки с марками и призменными отражателями на них, при расстояниях от 70 и до 350 метров в ясную погоду;
  • штативы с установкой на них трегеров с оптическими центрирами и маркой с призмой.
Читайте также:  Диклофенак гель 5 процентный способ применения

При использовании реек визирование прибора может осуществляться на ее шкалу. Оно возможно также и на самоклеющуюся отражательную пленку (ОП-50), с постоянной высотой визирования, определенной заранее. При наклеивании нескольких пленок на разной высоте рейки высота цели при съемке будет переменной в зависимости от рельефа местности и видимости.

Рис.2. Тригонометрическое нивелирование из середины с рейками.

Применяя вешки с размещением на них визирных марок с отражательными призмами рекомендуется удерживать их в специально для этого предусмотренных биподах, триподах, так называемых штативах для вешек с двумя и соответственно тремя ножками.

Рис.3. Тригонометрическое нивелирование из середины с вешками.

Еще одним вариантом прокладывания тригонометрических ходов методом «из середины» является способ трех штативов. Суть этой системы заключается в следующем. По направлению движения нивелировки устанавливаются сначала задний штатив, на который устанавливается трегер с оптическим отвесом. В него с помощью адаптера могут вставляться марки с призмами или марки с приклеенными на них отражательными пленками ОП-50.

Рис.4. Тригонометрическое нивелирование из середины по штативной системе.

На второй штатив устанавливается электронный тахеометр. И на передний (третий) штатив крепится вторая сигнальная марка с отражателем в трегер. Выполняются все требующиеся линейные и угловые измерения. Далее осуществляется переход на последующий за передним штативом пункт. Снимается с места только задний штатив, средний с тахеометром и передний остаются. Меняются местами только тахеометр и алаптеры с оптическими отвесами. На каждом штативе должны быть установлены именно в такой последовательности:

  • на заднем штативе призма с маркой;
  • на среднем электронный тахеометр;
  • на переднем также марка с отражательной призмой.

Технологическая цепочка повторяется.

Двухсторонний способ

Можно разделить на одновременное и неодновременное его исполнение. Одновременное нивелирование подразумевает под собой проведение измерений двумя приборами синхронно с привлечением соответственно и двух исполнителей работ. Неодновременный, двухсторонний метод заключается в геодезических измерениях с перестановкой тахеометра на пунктах наблюдения в такой же последовательности, как и при трех штативном способе. При этом он состоит как бы из двух односторонних ходов с измерениями «вперед» и « назад». Наиболее оптимальными расстояниями в них считаются длины линий величинами от 200 до 350 метров.

Применение различных методов нивелирования в геодезии и в основном высшей геодезии обусловлено поиском устранения влияния рефракции воздуха при измерениях в основном вертикальных углов и повышением точности работ. Проблемными моментами при выполнении измерений, помимо влияния воздушной рефракции, является отсутствие сведений по уклонению отвесной линии на пунктах опорных сетей, где измеряются зенитные расстояния.

Высокоточное тригонометрическое нивелирование, или как иногда его называют геодезическое, применяется при определении высотных координат государственных пунктов опорной сети. Одними из его элементов считаются горизонтальные проложения, которые могут быть получены при производстве триангуляции. Поэтому в тригонометрических ходах и определяют только высотные координаты. При этом по трудоемкости тригонометрические способы самые производительные и экономичные. Но по качеству работ, то есть точности измерений, он все-таки уступает тому же геометрическому нивелированию. При этом использованию тригонометрического нивелирования в горных районах местности нет альтернативы. А с использованием современных инструментов и методик работ значительно повышает точность конечных результатов.

Источник

Оцените статью
Разные способы