Способы определения массы одной молекулы

Способы определения массы одной молекулы

МКТ — это просто!

«Ничто не существует, кроме атомов и пустого пространства …» — Демокрит
«Любое тело может делиться до бесконечности» — Аристотель

Основные положения молекулярно-кинетической теории (МКТ)

Цель МКТ — это объяснение строения и свойств различных макроскопических тел и тепловых явлений, в них протекающих, движением и взаимодействием частиц, из которых состоят тела.
Макроскопические тела — это большие тела, состоящие из огромного числа молекул.
Тепловые явления — явления, связанные с нагреванием и охлаждением тел.

Основные утверждения МКТ

1. Вещество состоит из частиц (молекул и атомов).
2. Между частицами есть промежутки.
3. Частицы беспорядочно и непрерывно движутся.
4. Частицы взаимодействуют друг с другом (притягиваются и отталкиваются).

Подтверждение МКТ:

1. экспериментальное
— механическое дробление вещества; растворение вещества в воде; сжатие и расширение газов; испарение; деформация тел; диффузия; опыт Бригмана: в сосуд заливается масло, сверху на масло давит поршень, при давлении 10 000 атм масло начинает просачиваться сквозь стенки стального сосуда;

— диффузия; броуновское движение частиц в жидкости под ударами молекул;

— плохая сжимаемость твердых и жидких тел; значительные усилия для разрыва твердых тел; слияние капель жидкости;

2. прямое
— фотографирование, определение размеров частиц.

Броуновское движение

Броуновское движение — это тепловое движение взвешенных частиц в жидкости (или газе).

Броуновское движение стало доказательством непрерывного и хаотичного (теплового) движения молекул вещества.
— открыто английским ботаником Р. Броуном в 1827 г.
— дано теоретическое объяснение на основе МКТ А. Эйнштейном в 1905 г.
— экспериментально подтверждено французским физиком Ж. Перреном.

Масса и размеры молекул

Размеры частиц

Диаметр любого атома составляет около см.

Число молекул в веществе

где V — объем вещества, Vo — объем одной молекулы

Масса одной молекулы

где m — масса вещества,
N — число молекул в веществе

Единица измерения массы в СИ: [m]= 1 кг

В атомной физике массу обычно измеряют в атомных единицах массы (а.е.м.).
Условно принято считать за 1 а.е.м. :

Относительная молекулярная масса вещества

Для удобства расчетов вводится величина — относительная молекулярная масса вещества.
Массу молекулы любого вещества можно сравнить с 1/12 массы молекулы углерода.

где числитель — это масса молекулы, а знаменатель — 1/12 массы атома углерода

— это величина безразмерная, т.е. не имеет единиц измерения

Относительная атомная масса химического элемента

где числитель — это масса атома, а знаменатель — 1/12 массы атома углерода

— величина безразмерная, т.е. не имеет единиц измерения

Читайте также:  Способы для начала родовой деятельности

Относительная атомная масса каждого химического элемента дана в таблице Менделеева.

Другой способ определения относительной молекулярной массы вещества

Относительная молекулярная масса вещества равна сумме относительных атомных масс химических элементов, входящих в состав молекулы вещества.
Относительную атомную массу любого химического элемента берем из таблицы Менделеева!)

Количество вещества

Количество вещества (ν) определяет относительное число молекул в теле.

где N — число молекул в теле, а Na — постоянная Авогадро

Единица измерения количества вещества в системе СИ: [ν]= 1 моль

1 моль — это количество вещества, в котором содержится столько молекул (или атомов), сколько атомов содержится в углероде массой 0,012 кг.

Запомни!
В 1 моле любого вещества содержится одинаковое число атомов или молекул!

Но!
Одинаковые количества вещества для разных веществ имеют разную массу!

Постоянная Авогадро

Число атомов в 1 моле любого вещества называют числом Авогадро или постоянной Авогадро:

Молярная масса

Молярная масса (M) — это масса вещества, взятого в одном моле, или иначе — это масса одного моля вещества.

— масса молекулы
— постоянная Авогадро

Единица измерения молярной массы: [M]=1 кг/моль.

Формулы для решения задач

Эти формулы получаются в результате подстановки вышерассмотренных формул.

Масса любого количества вещества

и формула для 7 класса

(плотность х объем)

Количество вещества

Число молекул в веществе

Молярная масса

Масса одной молекулы

Связь между относительной молекулярной массой и молярной массой

Молекулярная физика. Термодинамика — Класс!ная физика

Источник

Основные методы определения молекулярной массы

Осмометрический метод. Метод основан на измерении осмотического давления разбавлен­ных растворов полимеров.

Молекулярную массу определяют по величине измеренного давле­ния, пользуясь уравнением Вант-Гоффа в вириальной форме:

,

где p— осмотическое давление, атм;

С массовая концентрация полимера, г/мл;

Т абсолютная температура;

R— газовая постоянная;

Коэффициент A2 характеризует взаимодействие между полимером и растворителем.

При бесконечном разбавлении уравнение принимает вид;

.

Предельное значение p/С при С 0 находят, измеряя осмоти­ческое давление ряда растворов полимера при малых концентрациях, путем графической экстраполяции зависимости p/С от С к нулевой концентрации.

Молекулярная масса, определяемый осмометрическим методом, является среднечисловым.

Метод светорассеяния.Измерение рассеяния света растворами полимеров — один из важнейших методов определения среднемассовой молекулярной массы полимеров в интервале . Широкое применение получил метод Дебая, при котором используют визуальный нефело­метр, предназначенный для измерения интенсивности рассеянного света раствором под углом 90° и асимметрии светорассеяния под углами 45 и 135° к падающему световому пучку *.

Для определения молекулярной массы необходимо измерить вели­чину , называемую приведенной интенсивностью рассеяния и про­порциональную отношению интенсивности света , рассеянногоединицей объема среды под углом , к интенсивности падающего светового пучка .

При и бесконечном разведении

Таким образом, для определения молекулярной маассы полимера необходимо измерить под углом 90° приведенные интенсивности рассеяния раствора при различных концентрациях и раство­рителя .

Построив график зависимости КС/ от С, экстраполяцией полученной прямой к нулевой концентрации находят обратную величину молекулярной массы полимера 1/М.

Читайте также:  Сколькими способами можно задать множество

Вискозиметрический метод. Вискозиметрический метод — наиболее простой и доступный метод определения молекулярной массы полимеров в широкой области значений молекулярных масс. Этот метод является косвенным и требует определения констант в уравнении, выражающем зави­симость вязкости от молекулярных масс.

Для определения вязкости раствора полимера измеряют время истечения t0 и t (в сек),равных объемов растворителя и раствора через капилляр вискозиметра при заданной постоянной температуре. Концентрацию раствора (С)обычно выражают в граммах на 100 мл растворителя; для измерения вязкости используют растворы с С

Контрольные вопросы

1.1.Что такое полидисперсность? Назовите монодисперсные и полидисперсные полимеры.

2.Какие методы усреднения молекулярных масс полимеров знаете?

3.3.Для чего необходимо знать молекулярно-массовые распределение полимеров (ММР)?

4.Принцип построения интегрального и дифференциального кривых ММР.

5.Какие методы фракционирования знаете?

6.В чем суть вискозиметрического метода определения молекулярной массы полимеров?

7.Для чего применяется гель-проникающая хроматография?

8.Принцип определения молекулярной массы полимеров методом светорассеяния.

9.Какими методами определяют среднечисловую молекулярную массу. Опишите осмометрический метод.

Источник

Способы определения массы одной молекулы

Темы исследований

Оформление работы

Наш баннер

Исследовательские работы и проекты

Способы определения размеров молекул

Определение размеров молекул

1 способ. Основан на том, что молекулы вещества, когда оно находится в твердом или жидком состоянии, можно считать плотно прилегающими друг к другу. В таком случае для грубой оценки можно считать, что объем V некоторой массы m вещества просто равен сумме объемов содержащихся в нем молекул. Тогда объем одной молекулы мы получим, разделив объем V на число молекул N.

Отсюда объем V0 одной молекулы определяется из равенства

В это выражение входит отношение объема вещества к его массе.

Обратное же отношение

есть плотность вещества,

так что

Плотность практически любого вещества можно найти в доступных всем таблицах. Молярную массу легко определить, если известна химическая формула вещества.

Объем одной молекулы, если считать ее шариком, равен
,
где r — радиус шарика.

Первый из этих двух корней — постоянная величина, равная ≈ 7,4 · 10-9 моль 1/3, поэтому формула для r принимает вид .

Например, радиус молекулы воды, вычисленный по этой формуле, равен rВ ≈ 1,9 · 10-10 м.

Описанный способ определения радиусов молекул не может быть точным уже потому, что шарики нельзя уложить так, чтобы между ними не было промежутков, даже если они соприкасаются друг с другом. Кроме того, при такой «упаковке» молекул – шариков были бы невозможны молекулярные движения. Тем не менее, вычисления размеров молекул по формуле, приведенной выше, дают результаты, почти совпадающие с результатами других методов, несравненно более точных.

2 способ. Метод Ленгмюра и Дево. В данном методе исследуемая жидкость должна растворяться в спирте (эфире) и быть легче воды, не растворяясь в ней. При попадании капли раствора на поверхность воды спирт растворяется в воде, а исследуемая жидкость образует пятно площадью S и толщиной d (порядка диаметра молекул).

Читайте также:  Характер определяет способ поведения личности

Если допустить, что молекула имеет форму шара, то объем одной молекулы равен:

где d – молекулы.

Необходимо определить диаметр молекулы d. В микропипетку набрать 0,5 мл раствора и, расположив ее над сосудом, отсчитать число капель n, содержащихся в этом объеме. Проделав опыт несколько раз, найти среднее значение числа капель в объеме 0,5 мл, а затем подсчитать объём исследуемой жидкости в капле: , где n – число капель в объеме 0,5 мл, 1:400 – концентрация раствора.

В ванну налить воду толщиной 1 – 2 см. Насыпать тальк тонким слоем на лист бумаги, ударяя слегка пальцем по коробочке. Расположив лист бумаги выше и сбоку от ванны на расстоянии 10 – 20 см, тальк сдуть с бумаги. На поверхность воды в ванне из пипетки капнуть одну каплю раствора. Линейкой измерить, средний диаметр образовавшегося пятна D и подсчитываю его площадь. Опыт повторить 2- 3 раза, а затем подсчитать диаметр молекул d.

Объём капли масла можно определить следующим образом: накапать 100 капель из капилляра в сосуд и измерить массу масла в нём. После этого массу, выраженную в килограммах, поделить на плотность масла, которую можно взять из таблицы плотности некоторых веществ (плотность масла растительного 800 кг/м3).

Затем полученный результат поделить на количество капель. Объём капли можно определить также с помощью мерного цилиндра: накапать масло в цилиндр, измерить его объём в см3 и перевести в м3, для чего поделить на 1000000, затем на количество капель масла. После того, как объём капли стал известен нужно капнуть одну каплю масла на поверхность воды, которая налита в широкий сосуд.

Для ускорения реакции предварительно немного нужно нагреть воду – приблизительно до 400С. Масло начнёт растекаться, и в результате получится круглое пятно. После того, как пятно перестанет расширяться, с помощью линейки измерить его диаметр и рассчитать площадь пятна по формуле:

Практическое получение наночастиц

В современном мире в связи с общей тенденцией к миниатюризации большими темпами стала развиваться такая наука, как нанотехнология. Методы нанотехнологии позволяют получить принципиально новые устройства и материалы с характеристиками, значительно превосходящими их современный уровень, что весьма важно для интенсивного развития многих областей техники, биотехнологии, медицины, охраны окружающей среды и др.

Ход работы:

1) Определение объёма капли

=14,13 мм3;

2) Определение объёма капли путём взвешивания.

1. На весы накапали 10 капель растительного масла, измерили массу

  • Масса 1 капли m1=0,2 г/10=0,02 г
  • Определение объёма капли V=m1/q=0,01г/0,8 г/см3=13 мм3

3) Определяем площадь пятна Sмасла=ПR2=11304 мм2

4) Площадь пятна нефти Sнефти=20*16=32000 мм2

5) Определяем толщину плёнки h=V/S

Для масла h=13/11304=1,2*10-7=120 нм

Для нефтиh=13/32000=4*10-8 м=40 нм

Вывод: В лабораторных условиях можно получать нанопленки

Источник

Оцените статью
Разные способы