Способы определения линии пересечения плоскостей

Способы определения линии пересечения плоскостей

Контрольные задания по теме: Эпюр № 1 (вариант назначает преподаватель)

Две плоскости параллельны, когда две взаимно пересекающиеся прямые одной плоскости соответственно параллельны двум взаимно пересекающимся прямым другой плоскости.


Рисунок 26

На рисунке 26 даны две плоскости. Одна задана треугольником АВС, а другая двумя пересекающимися прямыми l и m. Эти плоскости параллельны, т.к прямая l // ВС, а m // АС.

Прямая линии пересечения двух плоскостей определяется двумя точками, каждая из которых принадлежит обеим плоскостям. Для того чтобы определить общую точку, принадлежащую обеим плоскостям, вводят вспомогательную плоскость. Затем определяют линии пересечения вспомогательной плоскости и двух данных. Точка пересечения этих линий будет общей точкой плоскостей.

На практике обычно пользуются другим способом — находят точки пересечения двух прямых, принадлежащих одной плоскости с другой плоскостью, и через них проводят линию пересечения плоскостей. Возьмем для примера две плоскости в виде треугольников и построим линию их пересечения таким способом. На рисунке 27 даны две непрозрачные пластины АВС и EFG. Первая вспомогательная секущая плоскость S берется по стороне EG. Она пересекает плоскость треугольника АВС по линии 12. Строим горизонтальную проекцию линии 12 и находим точку пересечения ее со стороной EG.


Рисунок 27

Получаем точку М – горизонтальную проекцию точки пересечения. Вторая точка К находится аналогично, путем введения вспомогательной секущей плоскости S´ по стороне АВ. Затем определяется видимость плоскостей при помощи конкурирующих точек. Для того чтобы придать чертежу наглядность, одну из пластин можно заштриховать.

1. Сформулируйте условие параллельности плоскостей.

2. Сколько можно провести плоскостей параллельных данной через какую-либо точку пространства?

3. Как решается задача на построение линии пересечения плоскостей?

4. Как определить видимость плоскостей?

© ФГБОУ ВПО Красноярский государственный аграрный университет

Источник

Линия пересечения плоскостей онлайн

С помощю этого онлайн калькулятора можно найти линию пересечения плоскостей. Дается подробное решение с пояснениями. Для нахождения уравнения линии пересечения плоскостей введите коэффициенты в уравнения плоскостей и нажимайте на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Читайте также:  Способы работы над задачей

Линия пересечения плоскостей − теория, примеры и решения

Две плоскости в пространстве могут быть параллельными, могут совпадать или пересекаться. В данной статье мы определим взаимное расположение двух плоскостей, и если эти плоскости пересекаются, выведем уравнение линии пересечения плоскостей.

Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы плоскости α1 и α2:

α1: A1x+B1y+C1z+D1=0, (1)
α2: A2x+B2y+C2z+D2=0, (2)

Найдем уравнение линии пересеченя плоскостей α1 и α2. Для этого рассмотрим следующие случаи:

Умножив уравнение (2) на λ, получим:

α2: A1x+B1y+C1z+λD2=0, (3)

Если векторы n1 и n2 не коллинеарны, то решим систему линейных уравнений (1) и (2). Для этого переведем свободные члены на правую сторону уравнений и составим соответствующее матричное уравнение:

(4)

Как решить уравнение (4) посмотрите на странице Метод Гаусса онлайн или Метод Жоржана-Гаусса онлайн.

Так как в системе линейных уравнений (4) векторы n1=<A1, B1, C1> и n2=<A2, B2, C2> не коллинеарны, то решение этой системы линейных уравнений имеет следующий вид:

, (5)

Равенство (5) можно записать в следующем виде:

. (6)

Мы получили параметрическое уравнение прямой, которое является линией пересечения плоскостей α1 и α2. Полученное уравнение прямой можно записать в каноническом виде:

.

Пример 1. Найти линию пересечения плоскостей α1 и α2:

Поскольку направляющие векторы n1 и n2 неколлинеарны, то плолскости α1 и α2 пересекаются.

Для нахождения линии пересечения влоскостей α1 и α2 нужно решить систему линейных уравнений (7) и (8). Для этого составим матричное уравнение этой системы:

. (9)

Решим систему линейных уравнений (9) отностительно x, y, z. Для решения системы, построим расширенную матрицу:

. (10)

Обозначим через aij элементы i-ой строки и j-ого столбца.

Первый этап. Прямой ход Гаусса.

Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строку 2 со строкой 1, умноженной на −2:

.

Второй этап. Обратный ход Гаусса.

Исключим элементы 2-го столбца матрицы выше элемента a22. Для этого сложим строку 1 со строкой 2, умноженной на −2/5:

.

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

.
. (11)

где t− произвольное действительное число.

Запишем (11) в следующем виде:

. (12)
Читайте также:  Электронный способ передачи отчетности

Получили уравнение линии пересечения плоскостей α1 и α2 в параметрическом виде. Запишем ее в каноническом виде.

(13)

Из равентсв выше получим каноническое уравнение прямой:

Ответ. Уравнение линии пересечения плоскостей α1 и α2имеет вид:

Пример 2. Найти линию пересечения плоскостей α1 и α2:

(14)
(15)

Поскольку направляющие векторы n1 и n2 коллинеарны (n1 можно получить умножением n2 на число 1/2), то плоскости α1 и α2 параллельны или совпадают.

При умножении уравнения на ненулевое число уравнение не изменяется. Преобразуем уравнение плоскости α2 умножив на число 1/2:

(16)

Так как нормальные векторы уравнений (14) и (16) совпадают, а свободные члены разные, то плоскости α1 и α2 не совпадают. Следовательно они параллельны, т.е. не пересекаются.

Пример 3. Найти линию пересечения плоскостей α1 и α2:

(17)
(18)

Поскольку направляющие векторы n1 и n2 коллинеарны (n1 можно получить умножением n2 на число 1/3), то плоскости α1 и α2 параллельны или совпадают.

При умножении уравнения на ненулевое число уравнение не изменяется. Преобразуем уравнение плоскости α2 умножив на число 1/3:

(19)

Так как нормальные векторы уравнений (17) и (19) совпадают, и свободные члены равны, то плоскости α1 и α2 совпадают.

Источник

Построение линии пересечения плоскостей, заданных различными способами

Две плоскости пересекаются друг с другом по прямой линии. Чтобы её построить, необходимо определить две точки, принадлежащие одновременно каждой из заданных плоскостей. Рассмотрим, как это делается, на следующих примерах.

Найдем линию пересечения плоскостей общего положения α и β для случая, когда пл. α задана проекциями треугольника ABC, а пл. β – параллельными прямыми d и e. Решение этой задачи осуществляется путем построения точек L1 и L2, принадлежащих линии пересечения.

  1. Вводим вспомогательную горизонтальную плоскость γ1. Она пересекает α и β по прямым. Фронтальные проекции этих прямых, 1»C» и 2»3», совпадают с фронтальным следом пл. γ1. Он обозначен на рисунке как f0γ1 и расположен параллельно оси x.
  2. Определяем горизонтальные проекции 1’C’ и 2’3′ по линиям связи.
  3. Находим горизонтальную проекцию точки L1 на пересечении прямых 1’C’ и 2’3′. Фронтальная проекция точки L1 лежит на фронтальном следе плоскости γ.
  4. Вводим вспомогательную горизонтальную плоскость γ2. С помощью построений, аналогичных описанным в пунктах 1, 2, 3, находим проекции точки L2.
  5. Через L1 и L2 проводим искомую прямую l.

Стоит отметить, что в качестве пл. γ удобно использовать как плоскости уровня, так и проецирующие плоскости.

Читайте также:  Все способы съемки ситуации

Пересечение плоскостей, заданных следами

Найдем линию пересечения плоскостей α и β, заданных следами. Эта задача значительно проще предыдущей. Она не требует введения вспомогательных плоскостей. Их роль выполняют плоскости проекций П1 и П2.

  1. Находим точку L’1, расположенную на пересечении горизонтальных следов h0α и h0β. Точка L»1 лежит на оси x. Её положение определяется при помощи линии связи, проведенной из L’1.
  2. Находим точку L»2 на пересечении фронтальных следов пл. α и β. Точка L’2 лежит на оси x. Её положение определяется по линии связи, проведенной из L»2.
  3. Проводим прямые l’ и l» через соответствующие проекции точек L1 и L2, как это показано на рисунке.

Таким образом, прямая l, проходящая через точки пересечения следов плоскостей, является искомой.

Пересечение плоскостей треугольников

Рассмотрим построение линии пересечения плоскостей, заданных треугольниками ABC и DEF, и определение их видимости методом конкурирующих точек.

  1. Через прямую DE проводим фронтально-проецирующую плоскость σ: на чертеже обозначен ее след f. Плоскость σ пересекает треугольник ABC по прямой 35. Отметив точки 3»=A»B»∩f и 5»=A»С»∩f, определяем положение (∙)3′ и (∙)5′ по линиям связи на ΔA’B’C’.
  2. Находим горизонтальную проекцию N’=D’E’∩3’5′ точки N пересечения прямых DE и 35, которые лежат во вспомогательной плоскости σ. Проекция N» расположена на фронтальном следе f на одной линии связи с N’.

Через прямую BC проводим фронтально-проецирующую плоскость τ: на чертеже обозначен ее след f. С помощью построений, аналогичных тем, что описаны в пунктах 1 и 2 алгоритма, находим проекции точки K.

  • Через N и K проводим искомую прямую NK – линию пересечения ΔABC и ΔDEF.
  • Фронтально-конкурирующие точки 4 и 5, принадлежащие ΔDEF и ΔABC соответственно, находятся на одной фронтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π2. Так как (∙)5′ находится ближе к наблюдателю, чем (∙)4′, то отсек ΔABC с принадлежащей ему (∙)5 является видимым в проекции на пл. π2. С противоположной стороны от линии N»K» видимость треугольников меняется.

    Горизонтально-конкурирующие точки 6 и 7, принадлежащие ΔABC и ΔDEF соответственно, находятся на одной горизонтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π1. Так как (∙)6» находится выше, чем (∙)7», то отсек ΔABC с принадлежащей ему (∙)6 является видимым в проекции на пл. π1. С противоположной стороны от линии N’K’ видимость треугольников меняется.

    Источник

    Оцените статью
    Разные способы