Способы определения крутящего момента

ИЗМЕРЕНИЕ КРУТЯЩЕГО МОМЕНТА

При исследовании и контроле над работой различных устройств и агрегатов (двигателей, насосов, компрессоров, генераторов и т.д.) часто возникает необходимость измерения крутящего момента на валу устройства.

Крутящий момент на валу электродвигателя приближенно можно измерять обычным ваттметром при одновременном измерении частоты вращения. Крутящий момент однозначно определяется мощностью и частотой вращения из известных зависимостей. Однако здесь следует иметь ввиду, что, измеряя ток и напряжение, определяющие мощность, мы опроеделяем не фактическую мощность на валу двигателя, а его электрическую мощность, которую можно перевести в механическую только при условии, что достаточно точно известна электромеханическая характеристика электродвигателя. Это не всегда возможно, поэтому такой способ измерения используется только в том случае, когда передаваемый (или потребляемый приводимым двигателем объектом) крутящий момент не является предметом исследования.

В том случае, если крутящий момент необходимо измерять достаточно точно, применяются в основном два способа: измерение с помощью так называемых мотор-весов и измерение с помощью тензометрических датчиков крутящего момента.

Мотор-весы представляют собой укрепленную на оси платформу, на которой устанавливается испытываемый объект (рис. 17.1).

Рис. 17.1. Схема мотор-весов для измерения крутящего момента (а – с применением противовеса, б – с применением датчика силы): 1. Объект испытаний. 2. Платформа. 3. Ось на подшипниках. 4. Набор уравновешивающих грузов. 5. Кронштейн. 6. Датчик силы (тензодатчик). 7. Упор

При использовании противовесов (рис. 17.1а) практически невозможно измерять переменный крутящий момент и точно подобрать вес грузов 4, т.к. платформа в этом варианте является неустойчивой, и невыполнение условия F∙R = МКР может привести к ее колебаниям.

При использовании тензодатчиков 6 (рис. 17.1б) проблемы неустойчивости нет, а при установке датчиков 6 с обеих сторон при Δ

0 устройство может измерять крутящий момент, изменяющий не только величину, но и направление.

Промышленностью выпускаются также неподвижные тензодатчики крутящего момента, которые можно использовать в устройствах, напоминающих мотор-весы (рис. 17.2).

Рис. 17.2. Пример схемы измерения крутящего момента электродвигателя мотор-весами и неподвижным тензодатчиком: 1. Неподвижная платформа. 2. Насос. 3. Ременная передача. 4. Подвижная платформа. 5. Ось вращения подвижной платформы. 6. Подшипник оси. 7. Электродвигатель. 8. Муфта. 9. Неподвижный тензодатчик крутящего момента

В этой конструкции тензодатчик 9 может измерять переменный по величине и направлению крутящий момент. Ось электродвигателя 7 с максимальной точностью совпадает с осью подшипника 6 и датчика 9.

Выпускаются также вращающиеся тензодатчики крутящего момента, которые при свеем применении требуют использования токосъемных устройств.

И в неподвижных, и во вращающихся тензодатчиках чаще всего измерение производится тензорезисторами, наклеенными на упругий вал в направлении его «скручивания» под действием крутящего момента. Как правило, современные промышленные датчики имеют вторичные приборы, проградуированные в единицах крутящего момента (Н∙м) и снабженные цифровым выходом на ЭВМ.

В лабораторных условиях, когда по каким-либо объективным причинам нет возможности использовать готовые тензодатчики крутящего момента, можно использовать простой датчик, схема которого приведена на рис. 17.3.

Крутящий момент создает на измерительной балке 3 усилие, которое приводит к изменению сопротивления основного измерительного тензорезистора, наклеенного на боковую поверхность балки. Компенсационный тензорезистор наклеен сверху и не претерпевает растяжения или сжатия при изгибе балки.

В качестве балки 4 с тензорезисторами 5 можно использовать также готовый тензодатчик балочного типа.

Сигнал с тензорезисторов (или с промышленного тензодатчика) подводится к кольцевым проводникам токосъемного устройства 7, а затем с помощью графитовых щеток передается на вторичный прибор (тензостанцию), после чего выводится на показывающий прибор, или через АЦП – в ЭВМ.

Читайте также:  Способы развития кадрового потенциала организации

Использование готового тензодатчика балочного типа предпочтительнее, т.к. отпадает необходимость тарировки. Кроме того, во многих серийных тензодатчиках сразу имеется усилитель и АЦП, в связи с чем его сигнал может быть непосредственно послан в ЭВМ.

При измерении параметров вращающихся объектов очень часто имеется необходимость фиксации частоты вращения (частоты двойных ходов), а также определенных положений вала объекта, например – верхней или нижней мертвой точки поршневых машин, крайних положений гидро- или пневмоцилиндров и т.д. С этой целью чаще всего используют оптоэлектронные пары, магнитные управляемы герметичные контакты (герконы) и индукционные датчики.

В случаях применения оптоэлектронной пары для контроля частоты вращения или положений вала, на вращающийся вал устройства надевают диск с узкой прорезью и устанавливают на одной линии с одной стороны диска источник света, а на другой стороне – приемник (фоторезистор или фотодиод), которые включают в соответствующие измерительные схемы. При прохождении прорези между источником и приемником света электрические параметры последнего изменяются, появляется сигнал, который фиксируется измерительной аппаратурой. Для определения частоты вращения производят подсчет таких сигналов за единицу времени, или определяют временной интервал между соседними сигналами. Световой проход узкой щели выбирается в пределах нескольких десятых долей миллиметра и зависит от яркости источника света, чувствительности приемника, частоты вращения и расстояния оптоэлектронной пары от оси вращения. Чем больше это расстояние, тем шире может быть щель. Частота срабатываний такого устройства составляет сотни Гц.

Герконы очень просты по конструкции и надежны в эксплуатации. Они представляют собой два упругих проводника с магнитными свойствами, помещенные в общую стеклянную (или любую другую диэлектрическую) капсулу (рис. 17.4)

Рис. 17.4. Конструктивная схема простого геркона: 1. Выводы. 2. Стеклянная капсула. 3. Магнитоуправляемые упругие контакты

При наложении на геркон магнитного поля его контакты притягиваются друг к другу и геркон начинает пропускать электрический ток. Герконы достаточно миниатюрные устройства, диаметр капсулы может быть менее 2 мм при длине 5-6 мм. Частота их срабатываний может составлять сотни Гц.

Чаще всего управляют работой геркона постоянным магнитом, который крепится на подвижную часть устройства, положение которого хотят зафиксировать. При приближении магнита к геркону его контакты замыкаются. На рис. 17.5. приведена простейшая схема управления работой геркона.

Рис. 17.5. Простейшая схема включения геркона: 1. Подвижный объект. 2. Постоянный магнит. 3. Геркон. G — источник питания. R – переменный резистор для регулировки напряжения и тока выходного сигнала

Недостатком герконов является невозможность работы с большими токами, но в данном случае, при использовании его в качестве датчика, можно ограничиться током всего лишь в десятки миллиампер. Еще один недостаток — ограниченное число срабатываний до разрушения контактов. Оно составляет около 10 8 – 10 10 раз и более.

Простейший индукционный датчик представляет собой катушку индуктивности, намотанную на стальном сердечнике из магнитомягкой (легко перемагничиваемой) стали. При попадании датчика в переменное (изменяющееся) магнитное поле в катушке возникает ЭДС индукции, которая и является выходным сигналом датчика. Схема включения такого датчика аналогична схеме включения геркона (рис. 17.6).

Рис. 17.6 Простейшая схема включения индукционного датчика: 1. Подвижный объект. 2. Постоянный магнит. 3. Сердечник. 4. Катушка индуктивности R ‑ переменный резистор для регулировки напряжения и тока выходного сигнала

Как и оптоэлектронный датчик, данное устройство не имеет подвижных частей и не изнашивается во время работы. Основной недостаток таких датчиков – существенная зависимость уровня сигнала от скорости изменения магнитного поля, в связи с чем его невозможно использовать для контроля медленно перемещающихся (в т.ч. вращающихся) объектов.

Читайте также:  Сервитут способ защиты права
| следующая лекция ==>
| Операции на печени, желчном пузыре, желчных путях, поджелудочной железе

Дата добавления: 2016-04-19 ; просмотров: 10557 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Измерение момента вращения при помощи датчиков вращения

Как правило, измерение крутящего момента стационарного металлического вала не вызывает затруднений. В случае если предел упругости вала не превышен, величина скручивания вала пропорциональна действующему моменту вращения. Измерили градус скручивания; проверили Модуль Юнга для материала вала; применили формулу из Справочника Инженера, и вот Вы получили величину крутящего момента.

Измерение крутящего момента на непрерывно вращающемся вале — задача существенно более сложная. Существует несколько способов, с помощью которых можно ее решить, но наиболее часто используемым является расчет крутящего момента на основе данных о величине мощности, затрачиваемой на вращение вала. В реальности это обычно подразумевает измерение величины тока, приложенного к двигателю, обеспечивающему движение. Такое измерение просто, понятно, но весьма неточно из-за того, что потребление тока так же зависит от целого спектра факторов: скорости, напряжения источника питания, состояния подшипниковых узлов, температуры и т.д.

Измерение момента вращения с помощью тензометрических датчиков

Существенно более точным способом является измерение скручивания вала с помощью тензометрического датчика или датчика поверхностных акустических волн (ПАВ). Это точная, но очень сложная методика, требующая применения ВКУ или устройств беспроводной передачи данных между тензодатчиком на вращающемся валу и окружающим миром. Как и любой инженер, когда-либо имевший дело с тензометрией, выражусь резко — разница между теорией тензометрических измерений и практикой использования таких датчиков колоссальна. Тензометрическим датчикам присуще иметь большие температурные коэффициенты и свойство отрываться от поверхности измерения при ухудшении условий измерения. Определение крутящего момента с помощью тензодатчиков или датчиков ПАВ целесообразно в лабораторных условиях, но для большинства промышленных применений совершенно не реалистично.

Измерение крутящего момента с помощью угловых датчиков вращения

Существует другой способ. Он не новый, но, похоже, был успешно забыт. Впервые такой вариант был применен в 50-х годах прошлого века для измерения момента вращения в двигателях внутреннего сгорания — наиболее наглядно в турбореактивных двигателях тяжелых грузовых самолетов Hercules и C-130. Техники измеряли величину скручивания и, следовательно, момент вращения с помощью измерения величины фазового сдвига между двумя многопериодными резольверами, установленными и отъюстированными на валу. Термин «многопериодный» относится к выходу резольвера — так двухпериодный резольвер имеет циклический выходной сигнал, определяющий абсолютное положение с точностью 180°; 36ти-периодный резольвер имеет циклический выходной сигнал, определяющий абсолютное положение с точностью 10°.

При вращении вала каждый из резольверов выдает два сигнала: первый изменяется по синусоидальному закону, второй — по косинусоидальному. Для упрощения, на рисунке 1, приведенном ниже, показаны только два демодулированных синусоидальных сигнала.

Рисунок 1 — Измерение момента вращения с использованием многопериодных резольверов.

При приложении нулевого момента сигналы с обоих резольверов одинаковы и не имеют сдвига фаз. В случае, когда реальный момент приложен к валу сигнал одного резольвера имеет фазовый сдвиг относительно сигнала другого резольвера. Величина этого фазового сдвига прямо пропорциональна приложенному моменту. Используя многопериодные резольверы с большим числом циклов (например, 128), возможно даже при небольшой величине скручивания получить отклик в виде сравнительно большой величины фазового сдвига. Другими словами, эта методика достаточно прецизионна, чтобы измерять скручивание вала не только на величины менее 1°, но даже и на уровнях менее 0,1°. Из чего следует, что вал, на котором производится измерение, не обязательно должен быть длинным. Действительно, длина вала, необходимого для успешных измерений, может составлять менее 25 мм. Этого можно достигнуть, используя заведомо гибкий вал или располагая резольверы концентрически — один внутри другого — и соединяя внешние и внутренние части вала с применением пружины повышенной крутильной жесткости.

Читайте также:  Способы поиска подводных лодок

В отличие от тензометрических датчиков, резольверы известны своей надежностью, устойчивостью к внешним воздействиям и точностью, они зачастую используются в космической, оборонной и нефтегазовой технике, где требуются высокие точности и устойчивость к жестким условиям эксплуатации. Поскольку резольвер является бесконтактным измерительным устройством, также исключается необходимость применения токосъемников или оборудования радиочастотной передачи данных.

Итак, почему же эта техника измерений стала немодной? Вероятно, одна из причин в том, что и сами резольверы утратили свою популярность. Плоскопараллельные и плоские с большим полым валом резольверы, идеальные для использования при измерениях крутящего момента, являются откровенно дорогостоящими. Более того, сочетание резольверных двигателей с управляющей электроникой может быть очень сложным. Поскольку в наше время инженеры более привычны к цифровой электронике, они весьма неохотно соглашаются иметь дело и с самой аналоговой электроникой и, тем более, с измерениями фазовых сдвигов аналоговых переменных сигналов.

Новое поколение индуктивных датчиков

В настоящее время резольверы практически полностью заменены более современными устройствами — индуктивными энкодерами или «инкодерами». Технология измерения с помощью инкодеров основана на тех же принципах индукции, применяемых в резольверах, но при этом инкодеры содержат печатные платы вместо массивных и дорогих обмоток трансформаторов. Это позволяет существенно сокращать объем, вес и стоимость датчиков, и одновременно значительно увеличивать возможности измерений. Также в инкодеры обеспечен простой и удобный электрический интерфейс — постоянное напряжение и последовательная шина данных. Поскольку инкодеры базируются на тех же физических принципах, что и резольверы — они обеспечивают тот же набор измерительных возможностей — высокую точность и надежность измерений даже в жестких условиях окружающей среды. Мало того, инкодеры имеют оптимальный для угловых измерений форм-фактор — плоская конструкция с большим полым валом. Это позволяет пропускать вал через центр статора инкодера, а ротор инкодера закреплять непосредственно на вращающийся вал, на котором проводятся измерения. Это исключает необходимость использования ВКУ, точно так же, как это было при использовании резольверов.

Рисунок 2 — Измерение момента вращения и абсолютного положения с помощью индуктивных энкодеров.

Нет необходимости специально выбирать электронику и размещать ее отдельно, поскольку вся требуемая для датчиков электроника размещена непосредственно в статоре энкодера. Примечательно, что инкодеры доступны с разрешением до 4 миллионов импульсов на оборот, таким образом, достаточно минимального скручивания вала, чтобы обеспечить высокое разрешение измерений крутящего момента.

Температурные коэффициенты инкодера малы, в сравнении с тем, что может быть получено при использовании самых лучших тензометрических датчиков, а любые динамические искажения, вызываемые вращением вала на большой скорости, могут быть нивелированы с помощью тактового сигнала — единого для обоих инкодеров, обеспечивающего синхронность считывания данных.

В отличие от тензометрической техники, при использовании инкодеров не существует риска повреждения оборудования в случаях избыточного или импульсного приложения крутящего момента. Что еще более важно — технология позволяет проводить два вида измерений — крутящего момента и угла вращения одновременно, и по цене, меньшей, чем требует измерение одного только момента с помощью тензодатчиков.

Это старая технология, которая перестала быть модной, потому, что резольверы потеряли свою популярность. Современные индуктивные энкодеры возрождают применение принципов индукции для выполнения угловых измерений, и одновременно с этим, возвращают удобный, надежный и эффективный способ контроля крутящего момента и угла вращения.

Рисунок 3 — Индуктивные энкодеры, используемые для измерений крутящего момента на валах диаметром 300 мм: статор слева, ротор справа.

Источник: Сайт компании АВИ Солюшнс

Источник

Оцените статью
Разные способы