Способы определения координат это

В чем заключается геодезический метод определения координат

Мир заключает в себе немалое количество естественных и математических наук. Для таких наук, учёными создана система обозначения местоположения. Другими словами, точным наукам просто жизненно необходимы обозначения, которые могли бы понимать все люди, а не только учёные, занимающиеся развитием науки.

Имеются координаты обозначающие точки на плоскости и в воздухе. Геодезические координаты важны при проведении расчётов и вычислений, связанных с землепользованием. Как правило, их проводят узкоспециализированные сотрудники кадастра.

Координата

Координатой называется точка, обозначающая территориальное нахождение кого-либо или чего-либо в пространстве. Современная наука использует буквенные и цифровые обозначения для иллюстрирования объекта на плоскости.

Поскольку система обозначения используется в большинстве точных наук, соответственно значения в различных науках остаются неизменными для удобства понимания. Система обозначения была придумана учёными деятелями для решения большинства практических и теоретических задач.

Система координат создана уже давно, сотни лет назад. Но современный, научный вид приобрела лишь недавно. Как говорилось ранее, система координат используется большинством современных наук. Однако в геодезии координаты занимают почти главенствующую роль. Это происходит потому, что вся работа геодезиста начинается с обозначения местоположений группой координат.

Расположение используются в:

  1. Математике, геометрии (для построения графиков и функций).
  2. Артиллерии.
  3. Картографии (для обозначения объектов на карте).
  4. Космонавтике.
  5. Воздухоплавании.
  6. Судоходстве, а также абстрактных и точных науках.

Таким образом, наглядно можно убедиться в том, что специфика применения обозначения координат многообразна.

Определение координат, как правило, осуществляется лишь на двух осях пространства. Способность определять максимально точное местонахождение объекта требует включения третьей оси – высот. Объект определяется не в плоскости, а в пространстве.

Местоположение в геодезии

Геодезический метод определения координат заключается в обозначении точек на поверхности планеты Земля. Каждая точка обладает тремя значения, расчёты каждого значения производятся в индивидуальном порядке.

Геодезические системы координат имеют следующие пространственные факторы, которые влияют на работу геодезиста:

  • географические;
  • полярные;
  • прямоугольные;
  • Гусса-Крюгера.

Геодезист в процессе работы обязан использовать данные, полагаясь на все тонкости этих факторов. Каждый из этих факторов имеет свои уникальные формулы вычисления, которые помогают определить точное местонахождение объекта в пространстве.

Если работники пренебрегут этими факторами, полученные данные будут являться неверными.

Геодезические обозначения

Земной эллипсоид — это фигура для подсчёта геодезических координат. Фигура представляет точную модель планеты Земля.

Необходимость использования земного эллипсоида заключается в том, что общеизвестная фигура земного шара является математически неверной. Земля имеет форму не шара, а эллипсоида. Если бы учёные проводили свои исследования, руководствуясь тем, что формой земли является шар, все методы исследования планеты и космоса были бы в корне неверными.

Учёные определяют геодезические месторасположения, учитывая следующие критерии:

Как правило, используются все три величины.

Может возникнуть вопрос: для чего необходимы три величины. Измерение положения объекта в пространстве осуществляется благодаря подсчётам совокупности широты, долготы и высоты. Эти показатели указывают точное местонахождение точки.

Координаты в географии

Для продуктивной работы над тяжёлыми геодезическими задачами следует различать геодезические и географические координаты.

  • использование различных геометрических форм, применяемых в качестве идеальной формы Земли;
  • разное понимание высоты, долготы и широты.

Но, несмотря на различия, эти науки – геодезия и география – априори не могут существовать вне друг друга.

Первым фактическим различием научных сфер является то, что геодезия в исследованиях использует фигуру эллипсоид, а география – геоид. Это геометрическая фигура также является математически несовершенной, но визуально данная фигура больше схожа с планетой.

Геодезия и география имеют различительные понятия о широте, высоте и долготе. Из-за этого и появляется необходимость в разграничении координат среди данных наук. Изучения различий высоты, широты и долготы является весьма сложным математическим процессом. Однако различия можно описать в общих чертах.

Относительно понятия долготы науки никаких различий не имеют. Геодезическая широта рассчитывается от плоскости экватора до необходимой точки. Географическая широта определяется немного по-другому. Начало измеряется также от плоскости экватора, а концом является поверхность геоида.

Высота в геодезии определяется от уровня моря (в состоянии спокойствия), до необходимой точки. В географии высота рассчитывается от уровня сглаженной поверхности геоида, до необходимой точки.

Читайте также:  Способ формирования страхового фонда

Полярное месторасположение

Полярное местоположение необходимо для определения точки на маленьких территориях. Измерения полярной группы координат совсем неприспособленно для нахождения точки в больших территориальных масштабах.

Для измерения полярной системой координат необходимо учитывать два фактора:

Угол рассчитывается от северного направления меридианы до необходимой точки. Таким образом можно определить пространственное нахождение объекта, но для точных данных этого недостаточно. Далее следует выявить расстояние до объекта.

Расстояние вычисляется при помощи рулетки или сопоставления расстояния по карте. Из-за того, что расстояние в большинстве случаев определяется при помощи рулетки или других подручных средств, данный метод измерения не подходит для выявления точки на больших территориях.

Если применить полярную группу местоположения на территории, превышающей несколько десятков километров, полученные данные будут недостоверными в должной степени. Следовательно, вся проделанная работа будет являться попросту бесполезной.

Применение координат

Для нахождения точки в пространстве проделывается немалая описательная и вычислительная работа. Составляется специализированный план работы.

Имеется существенное количество классификаций научных систем координат. Рабочие решают, какую из систем координат стоит применить, исходя из поставленной задачи.

С работой маленьких масштабов отлично справляются следующие системы:

  • полярные системы;
  • прямоугольные системы координат.

Указанные системы удобны в использовании, но для решения задач в глобальных масштабах подойдут системы, позволяющие охватить все границы планеты.

Алгоритм положения применяется во многих науках, таких как: геодезия, география, математика, геометрия, баллистика (изучение полёта пули из огнестрельного оружия) и так далее. Естественным и математическим наукам необходимы алгоритмы, позволяющие выявить нахождение объекта в пространстве.

Работнику, проводящему замеры и выявляющему местоположения необходимых точек, требуется определиться с используемой системой координат.

Источник

Использование аналитического, картометрического и фотограмметрического методов

Автор: Дехканова Н.Н., к.э.н., начальник отдела геодезии и картографии Управления Федеральной службы государственной регистрации, кадастра и картографии по Кировской области.

Мы рассмотрим лишь три из пяти методов, использование которых законодательно установлено при определении координат характерных точек границ земельного участка, а также контура здания, сооружения или объекта незавершённого строительства на земельном участке. Это картометрический, фотограмметрический и аналитический методы.

Разговор коснётся заполнения реквизитов «1» и «2» раздела «Сведения о выполненных измерениях и расчётах» межевого/технического плана в части указания одного из трёх рассматриваемых методов определения координат, который может применяться при осуществлении кадастровых работ, а также формул для расчёта средней квадратической погрешности положения характерных точек границ при использовании данных методов.

Законодательную основу рассматриваемых вопросов составляют положения:

  1. Федерального закона от 24.07.2007 №221-ФЗ (ред. от 30.12.2015) «О государственном кадастре недвижимости» (далее – Закон о кадастре);
  2. Приказа Минэкономразвития РФ от 28.07.2011 №375 «Об определении требований к картам и планам, являющимся картографической основой государственного кадастра недвижимости» (далее – Приказ №375);
  3. Приказа Минэкономразвития России от 13.11.2015 №848 «Об утверждении требований к картам и планам, являющимся картографической основой Единого государственного реестра недвижимости, а также к периодичности их обновления» (далее – Приказ №848);
  4. Приказа Минэкономразвития России от 24.11.2008 №412 (ред. от 12.11.2015) «Об утверждении формы межевого плана и требований к его подготовке, примерной формы извещения о проведении собрания о согласовании местоположения границ земельных участков» (далее – Приказ №412);
  5. Приказа Минэкономразвития России от 08.12.2015 №921 «Об утверждении формы и состава сведений межевого плана, требований к его подготовке» (Зарегистрировано в Минюсте России 20.01.2016 №40651) (далее – Приказ №921);
  6. Приказа Минэкономразвития России от 01.09.2010 №403 (ред. от 04.12.2015) «Об утверждении формы технического плана здания и требований к его подготовке»;
  7. Приказа Минэкономразвития России от 23.11.2011 №693 (ред. от 25.02.2014) «Об утверждении формы технического плана сооружения и требований к его подготовке»;
  8. Приказа Минэкономразвития России от 10.02.2012 №52 (ред. от 03.12.2015) «Об утверждении формы технического плана объекта незавершенного строительства и требований к его подготовке»;
  9. Приказа Минэкономразвития России от 17.08.2012 №518 «О требованиях к точности и методам определения координат характерных точек границ земельного участка, а также контура здания, сооружения или объекта незавершенного строительства на земельном участке» (далее – Приказ №518);
  10. Письма ФГБУ «ФКП Росреестра» от 14.10.2015 №10-3613-КЛ «О рассмотрении обращения»;
  11. Письма Роснедвижимости от 03.03.2008 №ВК/0834@ «О выдаче заинтересованным лицам сведений государственного кадастра недвижимости»;
  12. ГКИНП-05-029-84. Основные положения по созданию и обновлению топографических карт масштабов 1:10000, 1:25000, 1:50000, 1:100000, 1:200000, 1:500000, 1:1000000 (утв. ГУГК СССР);
  13. ГКИНП-02-033-82. Инструкция по топографической съемке в масштабах 1:5000, 1:2000, 1:1000 и 1:500 (утв. ГУГК СССР 05.10.1979);
  14. ГКИНП (ГНТА)-02-036-02. Инструкция по фотограмметрическим работам при создании цифровых топографических карт и планов.
Читайте также:  Способ получения гидрокарбонат натрия

Перейдём теперь к вопросу использования картометрического метода.

Что предусматривает данный метод? Естественно, использование некой картографической основы.

В соответствии с частью 2 статьи 6 Закона о кадастре картографической основой государственного кадастра недвижимости (далее – картографическая основа кадастра) являются карты, планы, требования к которым определяются органом нормативно-правового регулирования в сфере кадастровых отношений.

Приказом №375 утверждены «Требования к картам и планам, являющимся картографической основой государственного кадастра недвижимости».

Важно! Документ утрачивает силу с 01.01.2017 в связи с изданием Приказа №848.

Если сегодня в соответствии с пунктом 2 Приказа №375 картографической основой кадастра являются:

1. карты (планы), представляющие собой фотопланы местности масштаба 1:5000, созданные на основе данных дистанционного зондирования Земли с разрешающей способностью 0,5м (космическая съёмка, аэрофотосъёмка), не содержащие сведений, отнесённых к государственной тайне, созданные в картографической проекции и системе координат, установленной для ведения государственного кадастра недвижимости;

2. карты (планы), представляющие собой цифровые топографические карты и планы, не содержащие сведений, отнесённых к государственной тайне, сформированные в векторной форме, созданные в государственной системе координат.

То в соответствии с пунктом 2 Приказа № 848 картографической основой будут:

1. фотопланы (ортофотопланы) и (или) цифровые топографические планы масштаба 1:2000 – для территории населённых пунктов, и только при их отсутствии допускается использовать фотопланы (ортофотопланы) и (или) цифровые топографические планы масштабов 1:5 000 и 1:10 000;

2. фотопланы (ортофотопланы) и (или) цифровые топографические карты масштаба 1:10000 и масштаба 1:25000 – для экономически освоенных территорий, территорий повышенного риска возникновения чрезвычайных ситуаций природного и техногенного характера и приграничных территорий, а при их отсутствии допускается использовать цифровые топографические карты масштаба 1:50000;

3. цифровые топографические карты масштаба 1:50000, 1:100000 – для территорий за границами населённых пунктов.

Что мы имеем на сегодняшний день?

В ряде субъектов РФ имеются созданные в разное время различными организациями ортофотопланы, отнесённые большей частью к документам государственного фонда данных, полученных в результате проведения землеустройства.

Ещё в письме Роснедвижимости от 03.03.2008 №ВК/0834@ «О выдаче заинтересованным лицам сведений государственного кадастра недвижимости» было отмечено, что материалы геодезических и картографических работ не относятся к документам государственного фонда данных, полученных в результате проведения землеустройства. Следовательно, создаваемые Роснедвижимостью и передаваемые ею в территориальные органы Роснедвижимости по субъектам Российской Федерации цифровые ортофотопланы в силу закона причисленные к материалам государственного картографо-геодезического фонда, являются единой картографической основой кадастра и предназначены в первую очередь для создания кадастровых карт различной тематической направленности.

Как это понимать? Кто может пользоваться картографической основой кадастра?

Что могут и должны использовать кадастровые инженеры в своей деятельности?

В соответствии с пунктом 1 Приказа №375 картографическая основа кадастра создается в целях составления и ведения кадастровых карт, а также предоставления сведений, внесённых в государственный кадастр недвижимости (далее – ГКН). Кто осуществляет эти полномочия? Конечно же, орган, осуществляющий кадастровый учёт и ведение государственного кадастра недвижимости (на сегодняшний день это ФГБУ «ФКП Росреестра» и его филиалы) [1] .

Состав сведений ГКН об объекте недвижимости указан в статье 7 Закона о кадастре, при этом в указанной статье приведён исчерпывающий список.

Важно! Данные ортофотопланов не являются сведениями государственного кадастра недвижимости, как и данные инвентаризационных планов, поэтому при обращении заинтересованных лиц орган кадастрового учёта выдаёт сведения ГКН в виде кадастровых планов территорий, а не копии цифровых ортофотопланов. И это правильно!

Поэтому неверно будет считать, что картографическая основа кадастра – это именно та основа, которая предназначена для деятельности кадастровых инженеров при выполнении работ по определению координат картометрическим методом.

Что же тогда использовать в качестве картографического материала для определения координат?

Рассмотрим сначала требования к точности определения координат картометрическим методом.

Для использования картометрического метода определения координат необходимо иметь картографический материал, основной частью которого является картографическое изображение. В качестве картографической основы кадастровых работ используются: государственные топографические карты различных масштабов, крупномасштабные планы городов или планы городов, создаваемые силами муниципальных управлений по архитектуре и градостроительству (масштабы 1:200 – 1:10000), ортофотопланы, планы лесоустройства масштабов 1:25000 и 1:10000, планы землеустройства различных масштабов.

Читайте также:  Способ передачи информации 4 буквы

Исходный картографический материал может быть представлен на бумажном и электронном носителе. Картографический материал на бумажном носителе представлен бумажными листами карт и планов, планами на жёсткой основе (фанера или алюминий) и картографическим изображением, построенным на пластике.

Определение уникальных характеристик точек (координат) связано с математической основой карты или плана. Согласно географической энциклопедии математическая основа карт и планов отражает геометрические законы построения карты и геометрические свойства изображения, обеспечивает возможность измерения координат, нанесения объектов по координатам, достаточно точные картометрические определения длин, площадей, объёмов, углов и др. К математической основе относят также проекцию карты, координатные сетки (географические, прямоугольные и иные) и масштаб.

Для определения координат точки Т1 (рисунок 1) необходимо восстановить перпендикуляры на соответствующие стороны координатной сетки, измерить отрезки и вычислить координаты по формулам:

где X0, Y0 – координаты юго-западного угла квадрата координатной сетки;

Δx, Δy – измеренные приращения координат.

Рис. 1. Определение координат точки с использованием координатной сетки

Согласно пункту 12 Приказа №518 при определении местоположения характерных точек, изображенных на карте (плане), величина средней квадратической погрешности зависит от категории земель и разрешённого использования земельных участков и принимается равной 0,0005м в масштабе карты (плана).

В этой связи средняя квадратическая ошибка определения положения точки может быть выражена формулой:

где M T1 средняя квадратическая ошибка определения положения точки;

mXT1, mYT1 – средние квадратические ошибки определения координат X, Y точки Т1 соответственно.

Как правило, средние квадратические ошибки равны и формула (2) преобразуется к виду:

Согласно пункту 24 «Основных положений по созданию и обновлению топографических карт масштабов 1:1000, 1:2000, 1:5000, 1:10000, 1:25000, 1:50000, 1:100000» (ГКИНП-05-029-84) точность нанесения координатной сетки не должна превышать 0,2мм в масштабе картографического материала. Минимизировать ошибки восстановления перпендикуляров можно путём контрольных измерений отрезков на противоположных сторонах квадрата координатной сетки (до точек a и b, см. рис.1) или другими способами.В свою очередь средние квадратические ошибки определения координат X, Y зависят от точности нанесения координатной сетки, точности восстановления перпендикуляра к стороне квадрата координатной сетки и точности измерения линейных отрезков.

Принимая во внимание вышесказанное, средние квадратические ошибки могут быть определены по формуле:

где m 0 – средняя квадратическая ошибка положения координатной сетки;

mΔX, ΔY – средняя квадратическая ошибка измерения отрезков.

Значения длин отрезков перпендикуляров на практике можно получить, используя в качестве технического средства измерения поперечный масштаб или линейку с миллиметровыми делениями. Точность измерений в случае применения поперечного масштаба, определяется ценой наименьшего деления, которое соответствует 0,1 величины основания поперечного масштаба. Основание поперечного масштаба принято равным двум сантиметрам. Величину точности измерения линейкой принимают равной точности графических определений – 1мм.

Но эти методы на практике сейчас применяются крайне редко, наиболее распространено определение координат методом, так называемой, электронной сколки, т. е. «оцифровки» чертежей, планов, карт и ввода этой информации в компьютер в виде растрового или векторного формата. Сканер также оцифровывает исходное изображение и с помощью соответствующих программ может превращать изображения в векторную форму. При снятии координат чертежа или карты местности оцифровываются только нужные, выбранные точки и линии.

Разрешающая способность и точность цифровой картографической продукции (далее – ЦКП) – это две её основные характеристики. Разрешающая способность – это минимальный шаг, с которым картографическая основа позволяет считывать координаты. Точность – это погрешность снятия координат, определяемая как отклонение измеренных значений координат точки от значений координат, полученных при наложении на исходный копируемый документ идеальной координатной сетки. Чем выше разрешающая способность, тем выше точность.

Точность существующих цифровых карт/планов колеблется в пределах от 0,005 до 0,03 дюйма. На результат работы также влияет точность действий исполнителя работ. В среднем хороший специалист вносит погрешность не более 0,004 дюйма » 0,0001м (1 дюйм = 2,54 сантиметра).

Точность цифровых ортофотопланов определяется: масштабом исходных фотоснимков; ошибками элементов внутреннего, взаимного и внешнего ориентирования исходных фотоснимков или их растровых полутоновых изображений; ошибками цифровой модели рельефа; величиной пикселя сканирования исходных фотоснимков и др [2] .

В таблице 1 представлены величины средних квадратических ошибок для различных способов измерений.

Значения средних квадратических ошибок определения
координат для различных способов измерения

Источник

Оцените статью
Разные способы