Способы определения коэффициента теплопроводности

Теплопроводность и методы её определения

Теплопроводность — важнейшая теплофизическая характеристика материалов. Её необходимо учитывать при конструировании нагревательных устройств, выборе толщины защитных покрытий, учёте тепловых потерь. Если под рукой или в наличии нет соответствующего справочника, а состав материала точно не известен, его теплопроводность необходимо вычислить или измерить экспериментально.

Составляющие теплопроводности материалов

Теплопроводность характеризует процесс теплопереноса в однородном теле с определёнными габаритными размерами. Поэтому исходными параметрами для измерения служат:

  1. Площадь в направлении, перпендикулярном направлению теплового потока.
  2. Время, в течение которого происходит перенос тепловой энергии.
  3. Температурный перепад между отдельными, наиболее удалёнными друг от друга частями детали или исследуемого образца.
  4. Мощность теплового источника.

Для соблюдения максимальной точности результатов требуется создать стационарные (установившиеся во времени) условия теплопередачи. В этом случае фактором времени можно пренебречь.

Определить теплопроводность можно двумя способами — абсолютным и относительным.

Абсолютный метод оценки теплопроводности

В данном случае определяется непосредственное значение теплового потока, который направляется на исследуемый образец. Чаще всего образец принимается стержневым или пластинчатым, хотя в некоторых случаях (например, при определении теплопроводности коаксиально размещённых элементов) он может иметь вид полого цилиндра. Недостаток пластинчатых образцов — необходимость в строгой плоскопараллельности противоположных поверхностей.

Поэтому для металлов, характеризующихся высокой теплопроводностью, чаще принимают образец в форме стержня.

Суть замеров состоит в следующем. На противоположных поверхностях поддерживаются постоянные температуры, возникающие от источника тепла, который расположен строго перпендикулярно к одной из поверхностей образца.

В этом случае искомый параметр теплопроводности λ составит
λ=(Q*d)/F(T2-T1), Вт/м∙К, где:
Q — мощность теплового потока;
d — толщина образца;
F — площадь образца, на которую воздействует тепловой поток;
Т1 и Т2 — температуры на поверхностях образца.

Поскольку мощность теплового потока для электронагревателей может быть выражена через их мощность UI, а для измерения температуры могут быть использованы подключённые к образцу термодатчики, то вычислить показатель теплопроводности λ не составит особых трудностей.

Для того, чтобы исключить непроизводительные потери тепла, и повысить точность метода, узел образца и нагревателя следует поместить в эффективный теплоизолирующий объём, например, в сосуд Дьюара.

Читайте также:  Интересные способы приготовления риса

Относительный метод определения теплопроводности

Исключить из рассмотрения фактор мощности теплового потока можно, если использовать один из способов сравнительной оценки. С этой целью между стержнем, теплопроводность которого требуется определить, и источником тепла помещают эталонный образец, теплопроводность материала которого λ3 известна. Для исключения погрешностей измерения образцы плотно прижимаются друг к другу. Противоположный конец измеряемого образца погружается в охлаждающую ванну, после чего к обоим стержням подключаются по две термопары.

Далее включают нагреватель, и по достижении стационарного состояния, измеряют разницу температур между термопарами испытуемого образца и .

Теплопроводность вычисляется из выражения
λ=λ3(d(T1 3 -T2 3 )/d3(T1-T2)), где:
d — расстояние между термопарами в исследуемом образце;
d3 — расстояние между термопарами в ;
T1 3 и T2 3 — показания термопар, установленных в ;
Т1 и Т2 — показания термопар, установленных в исследуемом образце.

Теплопроводность можно определить и по известной электропроводности γ материала образца. Для этого в качестве испытуемого образца принимают проводник из проволоки, на концах которого любым способом поддерживается постоянная температура. Через проводник пропускается постоянный электрический ток силой I, причём клеммный контакт должен приближаться к идеальному.

По достижении стационарного теплового состояния температурный максимум Tmax будет располагаться посредине образца, с минимальными значениями Т1 и Т2 на его торцах. Измерив разность потенциалов U между крайними точками образца, значение теплопроводности можно установить из зависимости

Точность оценки теплопроводности возрастает с возрастанием длины испытуемого образца, а также с увеличением силы тока, который пропускается через него.

Относительные методы измерения теплопроводности точнее абсолютных, и более удобны в практическом применении, однако требуют существенных затрат времени на выполнение замеров. Это связано с длительностью установления стационарного теплового состояния в образце, теплопроводность которого определяется.

Источник

Некоторые методы определения теплопроводности

Для исследования теплопроводности вещества используют две группы методов: стационарные и нестационарные.

Теория стационарных методов более проста и разработана более полно. Но нестационарные методы в принципе помимо коэффициента тепло­проводности позволяют получить информации о коэффициенте температуропроводности и теплоёмкости. Поэтому в последнее время большое внимание уделяется разработке нестационарных методов определения теплофизических свойств веществ.

Здесь рассматриваются некоторые стационарные методы определения коэффициента теплопроводности веществ.

Читайте также:  Голодание как способ сохранения долголетия

а) Метод плоского слоя. При одномерном тепловом потоке через плоский слой коэффициент теплопроводности определяется по формуле

(13)

где d — толщина, T1 и T2 — температуры «горячей» и «холодной» поверхно­сти образца.

Для исследования теплопроводности этим методом необходимо создать близкий к одномерному тепловой поток.

Обычно температуры измеряют не на поверхности образца, а на неко­тором расстоянии от них (см. рис. 2.), поэтому необходимо в измеренную разность температур ввести поправки на перепад температуры в слое нагревателя и холодильника, свести к минимуму термическое сопротивление контактов.

Указанный метод рекомендуется применять при исследовании твёрдых тел, обладающих относительно малыми значениями l и жидкостей.

При исследовании жидкостей для устранения явления конвекции градиент температур должен быть направлен вдоль поля гравитации (вниз).

Рис. 2. Схема методов плоского слоя для измерения теплопроводности.

1 – исследуемый образец; 2 – нагреватель; 3 – холодильник; 4, 5 – изоляционные кольца; 6 – охранные нагреватели; 7 – термопары; 8, 9 – дифференциальные термопары.

б) Метод Егера. Метод основан на решении одномерного уравнения тепло­проводности, описывавшего распространение теплоты вдоль стержня, нагреваемого электрическим током. Трудность использования этого метода состоит в невозможности создания строгих адиабатных условий на внешней поверхности образца, что нарушает одномерность теплового потока.

Расчётная формула имеет вид:

(14)

где s — электропроводность исследуемого образца, U – падение напряжения между крайними точками на концах стержня, DT – разность температур между серединой стержня и точкой на конце стержня.

Рис. 3. Схема метода Егера.

1 – электропечь; 2 – образец; 3 – цапфы крепления образца; Т1 ¸ Т6 – места заделки термопар.

Этот метод используют при исследовании электропроводных материалов.

в) Метод цилиндрического слоя. Исследуемая жидкость (сыпучий материал заполняет цилиндрический слой, образованный двумя расположенными коаксиально цилиндрами. Один из цилиндров, чаще всего внутренний, является нагревателем (рис.4).

Рис.4.Схема метода цилиндрического слоя

1 — внутренний цилиндр; 2 — основной нагреватель; 3 — слой исследуемого вещества; 4 – наружный цилиндр; 5 — термопары; 6 – охранные цилиндры; 7 — дополнительные нагреватели; 8 — корпус.

Рассмотрим подробнее стационарный процесс теплопроводности в цилиндрической стенке, температура наружной и внутренней поверхностей которой поддерживается постоянными и равными Т1 и Т2 (в нашем случае это слой исследуемого вещества 5). Определим тепловой поток через стенку при условии, что внутренний диаметр цилиндрической стенки d1 = 2r1, а наружный d2 = 2r2, l = const и теплота распространяется только в радиальном направлении.

Читайте также:  Вихревой способ сжигания это

Для решения задачи воспользуемся уравнением (12). В цилиндрических координатах, когда ; уравнение (12), согласно (1О), принимает вит:

. (15)

Введём обозначение dT/dr = 0, получим

и .

После интегрирования и потенцирования этого выражения, переходя к первоначальным переменным получим:

. (16)

Как видно изэтого уравнения, зависимость T=f(r) носит логарифмический характер.

Постоянные интегрирования C1 и C2 можно, определить, если в это уравнение подставить граничные условия:

Решение этих уравнений относительно С1 и С2 даёт:

;

Подставив эти выражения вместо С1 и С2 в уравнение (1б), получим

(17)

тепловой поток через площадь цилиндрической поверхности радиуса r и длиной определяется с помощью закона Фурье (5)

.

После подстановки получим

. (18)

Коэффициент теплопроводности l при известных величинах Q, Т1, T2, d1, d2, рассчитывают по формуле

. (19)

Для подавления конвекции (в случав жидкости) цилиндрический слой должен иметь малую толщину, обычно доли миллиметра.

Уменьшение торцевых потерь в методе цилиндрического слоя достигается за счёт увеличения отношения /d и охранными нагревателями.

г) Метод нагретой проволоки. В этом методе отношение /d увеличивается за счёт уменьшения d. Внутренний цилиндр заменяется тонкой проволокой, являвшейся одновременно нагревателем и термометром сопротивления (рис.5). В результате относительной простоты конструкции и детальной разработки теории, метод нагретой проволоки стал одним из наиболее совершенных и точных. В практике экспериментальных исследований теплопроводности жидкостей игазов он занимает ведущее место.

Рис. 5. Схема измерительной ячейки, выполненной по методу нагретой проволоки. 1 – измерительная проволока, 2 – трубка, 3 – исследуемое вещество, 4 – токоподводы, 5 – потенциальные отводы, 6 – наружный термометр.

При условия, что весь тепловой поток от участка AВ распространяет­ся радиально и разность температур T1 – T2 не велика, так что в этих пределах можно считать l = const, коэффициент теплопроводности вещества определяется по формуле

, (20)

где QAB = T×UAB – мощность, выделяемая на проволоке.

д) Метод шара. Находит применение в практике исследований теплопроводности жидкостей и сыпучих материалов. Исследуемому веществу придают форму сферического слоя, что позволяет, в принципе, исключать неконтролируемые потери теплоты. В техническом отношении этот метод достаточно сложен.

Источник

Оцените статью
Разные способы