Способы определения кислотности среды

Способы определения рН среды..

Химическим путем рН раствора можно определить при помощи кислотно-основных индикаторов.

Кислотно-основные индикаторы – органические вещества, окраска которых зависит от кислотности среды.

Наиболее распространенными индикаторами являются лакмус, метиловый оранжевый, фенолфталеин. Лакмус в кислой среде окрашивается в красный цвет, в щелочной – в синий. Фенолфталеин в кислой среде — бесцветный, в щелочной окрашивается в малиновый цвет. Метиловый оранжевый в кислой среде окрашивается в красный цвет, а в щелочной – в желтый.

В лабораторной практике часто смешивают ряд индикаторов, подобранных таким образом, чтобы цвет смеси изменялся в широких пределах значений рН. С их помощью можно определить рН раствора с точностью до единицы. Эти смеси называют универсальными индикаторами.

Имеются специальные приборы – рН–метры, с помощью которых можно определить рН растворов в диапазоне от 0 до 14 с точностью до 0,01 единицы рН.

Гидролиз солей

При растворении некоторых солей в воде нарушается равновесие процесса диссоциации воды и, соответственно, изменяется рН среды. Это объясняется тем, что соли реагируют с водой.

Гидролиз солей химическое обменное взаимодействие ионов растворенной соли с водой, приводящее к образованию слабодиссоциирующих продуктов (молекул слабых кислот или оснований, анионов кислых солей или катионов основных солей) и сопровождающееся изменением рН среды.

Рассмотрим процесс гидролиза в зависимости от природы оснований и кислот, образующих соль.

Соли, образованные сильными кислотами и сильными основаниями (NaCl, kno3, Na2so4 и др.).

Допустим, что при взаимодействии хлорида натрия с водой происходит реакция гидролиза с образованием кислоты и основания:

NaCl + H2O ↔ NaOH + HCl

Для правильного представления о характере этого взаимодействия запишем уравнение реакции в ионном виде, учитывая, что единственным слабодиссоциирующим соединением в этой системе является вода:

Na + + Cl — + HOH ↔ Na + + OH — + H + + Cl —

При сокращении одинаковых ионов в левой и правой частях уравнения остается уравнение диссоциации воды:

Как видно, в растворе нет избыточных ионов Н + или ОН — по сравнению с их содержанием в воде. Кроме того, никаких других слабодиссоциирующих или труднорастворимых соединений не образуется. Отсюда делаем вывод, что соли, образованные сильными кислотами и основаниями гидролизу не подвергаются, а реакция растворов этих солей такая же, как и в воде, нейтральная (рН=7).

При составлении ионно–молекулярных уравнений реакций гидролиза необходимо:

1) записать уравнение диссоциации соли;

2) определить природу катиона и аниона (найти катион слабого основания или анион слабой кислоты);

3) записать ионно-молекулярное уравнение реакции, учитывая, что вода — слабый электролит- и что сумма зарядов должна быть одинаковой в обеих частях уравнения.

Соли, образованные слабой кислотой и сильным основанием

Рассмотрим реакцию гидролиза ацетата натрия. Эта соль в растворе распадается на ионы: CH3COONa ↔ CH3COO — + Na + ;

Na + -катион сильного основания, CH3COO — — анион слабой кислоты.

Катионы Na + не могут связывать ионы воды, так как NaОН – сильное основание — полностью распадается на ионы. Анионы слабой уксусной кислоты CH3COO — связывают ионы водорода с образованием малодиссоциированной уксусной кислоты:

Видно, что в результате гидролиза CH3COONa в растворе образовался избыток гидроксид-ионов, и реакция среды стала щелочной (рН > 7).

Таким образом можно сделать вывод, что соли, образованные слабой кислотой и сильным основанием гидролизуются по аниону (An n ). При этом анионы соли связывают ионы Н + , а в растворе накапливаются ионы ОН , что обуславливает щелочную среду (рН>7):

An n — + HOH ↔ Han ( n -1)- + OH — , (при n=1 образуется HAn – слабая кислота).

Гидролиз солей, образованных двух- и трехосновными слабыми кислотами и сильными основаниями, протекает ступенчато

Рассмотрим гидролиз сульфида калия. К2S диссоциирует в растворе:

К + — катион сильного основания, S 2 — анион слабой кислоты.

Катионы калия не принимают участия в реакции гидролиза, взаимодействуют с водой только анионы слабой сероводородной кислоты. В данной реакции по первой ступени происходит образование слабодиссоциирующих ионов HS — , по второй ступени – образование слабой кислоты H2S:

Читайте также:  Способ приготовления какао несквик для детей

1-я ступень: S 2- + HOH ↔ HS — + OH — ;

2-я ступень: HS — + HOH ↔ H2S + OH — .

Образующиеся по первой ступени гидролиза ионы ОН — значительно снижают вероятность гидролиза по следующей ступени. В результате практическое значение обычно имеет процесс, идущий только по первой ступени, которым, как правило, и ограничиваются при оценке гидролиза солей в обычных условиях.

Источник

pH-метрия

Понятие pH

Вода является слабым электролитом; она слабо диссоциирует по уравнению

При 25 °С в 1 л воды распадается на ионы 10 -7 моль H2O. Концентрация ионов H + и OH — (в моль/л) будет равна

Чистая вода имеет нейтральную реакцию. При добавлении в нее кислоты концентрация ионов H + увеличивается, т.е. [H + ]>10 -7 моль/л; концентрация ионов OH — уменьшается, т.е. [OH — ] -7 моль/л. При добавлении щелочи концентрация ионов OH — увеличивается, т.е. [OH — ]>10 -7 моль/л; следовательно, [H + ] -7 моль/л. На практике, для выражения кислотности или щелочности раствора вместо концентрации [H + ] используют ее отрицательный десятичный логарифм, который называют водородным показателем pH:

В нейтральной воде pH=7. Для растворов с кислой реакцией pH 7.

Если учесть, что свойства растворов зависят от активностей находящихся в них ионов, то следует приведенное выражение записать в виде:

В разбавленных растворах значения концентрации и активности совпадают и только при высокой минерализации могут быть значительные расхождения.

В настоящее время pH считается характеристикой активности ионов водорода. Поэтому, иногда в символ pH вводят нижний индекс «a»: pHa или paH. Обычно, это делается, когда необходимо явно подчеркнуть отличие определения водородного показателя через концентрацию или активность.

Буферные растворы

Многие аналитические реакции проводят при строго определенном значении pH, которое должно сохраниться в течение всего времени проведения реакции. В ходе некоторых реакций pH может изменяться в результате связывания или высвобождения ионов H + . Для сохранения постоянного значения pH применяют буферные растворы.

Буферные растворы представляют собой чаще всего смеси слабых кислот с солями этих кислот или смеси слабых оснований с солями этих же оснований. Если, например, в ацетатный буферный раствор, состоящий из уксусной кислоты CH3COOH и ацетата натрия CH3COONa добавить некоторое количество такой сильной кислоты, как HCl, она будет реагировать с ацетат-ионами с образованием малодиссоциирующей CH3COOH:

Таким образом, добавленные в раствор ионы H + не останутся свободными, а будут связаны ионами CH3COO — , и поэтому pH раствора почти не изменится.

При добавлении раствора щелочи к ацетатному буферному раствору ионы OH — будут связаны недиссоциированными молекулами уксусной кислоты CO3COOH:

Следовательно, pH раствора и в этом случае также почти не изменится.

Буферные растворы сохраняют свое буферное действие до определенного предела, т. е. они обладают определенной буферной емкостью. Если ионов H + или OH — оказалось в растворе больше, чем позволяет буферная емкость раствора, то pH будет изменяться в значительной степени, как и в небуферном растворе.

Обычно в методиках анализа указывается, каким именно буферным раствором следует пользоваться при выполнении данного анализа и как его следует приготовить.

Для настройки pH-метров применяют стандартные буферные растворы с точными значениями pH.

Принятая в России по стандарту 8.134-74 шкала pH основана на воспроизводимых значениях pH нескольких растворов. Шкала pH обладает внутренней согласованностью, т.е. экспериментально измеренная величина pH не зависит от того, какой из растворов был выбран в качестве стандартного.

Способы измерения pH

Для определения величины pH существуют два основных метода: колориметрический и потенциометрический.

Колориметрический метод основан на изменении окраски индикатора, добавленного к исследуемому раствору, в зависимости от величины pH. Этот метод недостаточно точен, требует введения солевых и температурных поправок, дает значительную погрешность при очень малой минерализации исследуемой воды (менее 30 мг/л) и при определении pH окрашенных и мутных вод. Метод нельзя применять для вод, содержащих сильные окислители или восстановители. Используется обычно в экспедиционных условиях и для ориентировочных определений.

Потенциометрический метод намного точнее, лишен в значительной мере всех перечисленных недостатков, но требует оборудования лабораторий специальными приборами — pH-метрами. Потенциометрический метод основан на измерении ЭДС электродной системы, состоящей из индикаторного электрода и электрода сравнения. Электрод сравнения иногда называют вспомогательным электродом.

Наибольшее практическое применение нашел стеклянный индикаторный электрод, который можно использовать в широком диапазоне pH и в присутствии окислителей.

Кроме стеклянного электрода, для определения величины pH применяются также водородный, хингидронный, сурьмяный и другие электроды. Однако широкого распространения они не получили.

Читайте также:  Методы приемы способы психологического воздействия

Стеклянный электрод

Стеклянный электрод изготовляется из специальный сортов стекла, обладающих некоторой электропроводностью, достаточной, чтобы тонкую пленку из такого стекла можно было бы включить в качестве составляющей электрической цепи. Для измерения pH используется стекло, электропроводность которого обусловлена перемещением в стекле ионов H+ (электропроводность любого стекла обусловлена способностью к перемещению катионов относительно неподвижного остова — полианиона полимерной кремниевой кислоты).

Собственно стеклянный электрод представляет собой стеклянную трубку с выдутым на ее конце шариком с очень тонкой стенкой, в которую залита суспензия AgCl в растворе HCl и погружена серебряная проволока. Таким образом, внутри трубки с шариком находится хлорсеребряный электрод. Для измерения pH стеклянный электрод погружают в испытуемый раствор (тем самым не внося в него никаких посторонних веществ). В этот же раствор напрямую или через электролитический ключ погружают электрод сравнения.

Таким образом, образуется гальванический элемент, состоящий из хлорсеребрянного электрода и электрода сравнения, но внутренняя электролитическая цепь этого элемента включает электропроводную стеклянную пленку, а также исследуемый раствор.

В полученной системе перенос электронов от хлорсеребрянного электрода к электроду сравнения, происходящий под действием непосредственно измеряемой разности потенциалов, неизбежно сопровождается переносом эквивалентного количества протонов из внутренней части стеклянного электрода в испытуемый раствор. Если считать концентрацию ионов H+ внутри стеклянного электрода постоянной, то измеряемая ЭДС является функцией только активности ионов водорода, т.е. pH исследуемого раствора.

Определение рН в воде

Определение величины рН воды имеет большое значение при оценке качества природных вод, при оценке коррозивности воды в системах питьевого и промышленного водоснабжения. Этот показатель также важен при обработке питьевой воды, подготовке воды для промышленных установок, при утилизации бытовых и заводских стоков.

Величина концентрации ионов водорода в речных водах обычно колеблется в пределах 6,5-8,5; атмосферных осадках 4,6 — 6,1; болотах 5,5 — 6,0; океане 7,9 — 8,3 рН. рН воды шахт и рудников достигает иногда единицы, а содовых озер и термальных источников десяти. Концентрация ионов водорода подвержена сезонным колебаниям. Зимой величина рН для большинства речных систем составляет 6,8 — 7,4; летом 7,4 — 8,2.

Литература

Васильев В. П. Аналитическая химия. В 2 кн. Кн. 2. Физико-химические методы анализа: Учеб. для студ. вузов, обучающихся по химико-технол. спец. — 2-е изд., перераб. и доп. — М.:Дрофа, 2002. — 384 с., ил. — с. 191.

Кнорре Д. Г., Крылова Л. Ф., Музыкантов В. С. Физическая химия: Учеб. пособие для вузов. — М.: Высш. школа, 1981. — 328 с., ил., с. 263-264.

Коростелев П. П. Лабораторная техника химического анализа. — Под ред. докт. хим. наук А. И. Бусеева, — М.: Химия, 1981. — 312 с., ил., с. 226-232.

Руководство по химическому анализу поверхностных вод суши. Под ред. д. х. н. проф. А. Д. Семенова. Л.: Гидрометеоиздат, 1977., с. 31-36.

Фомин Г. С. Вода. Контроль химической, бактериальной и радиационной безопасности по международным стандартам. Энциклопедический справочник. — 2-е изд. перераб. и доп. — М:. Издательство «Протектор», 1995. — 624 с., ил., с. 95-96.

Источник

Водородный показатель кислотности (рН)

Водородный показатель, pH (лат. pondus Hydrogenii — «вес водорода», произносится «пэ аш») — мера активности (в сильно разбавленных растворах эквивалентна концентрации) ионов водорода в растворе, которая количественно выражает его кислотность. Равен по модулю и противоположен по знаку десятичному логарифму активности водородных ионов, которая выражена в молях на один литр:

.

История водородного показателя pH .

Понятие водородного показателя введено датским химиком Сёренсеном в 1909 году. Показатель называется pH (по первым буквам латинских слов potentia hydrogeni — сила водорода, либо pondus hydrogeni — вес водорода). В химии сочетанием pX обычно обозначают величину, которая равна lg X, а буквой H в этом случае обозначают концентрацию ионов водорода (H + ), либо, вернее, термодинамическую активность гидроксоний-ионов.

Уравнения, связывающие pH и pOH .

Вывод значения pH .

В чистой воде при 25 °C концентрации ионов водорода ([H + ]) и гидроксид-ионов ([OH − ]) оказываются одинаковыми и равняются 10 −7 моль/л, это четко следует из определения ионного произведения воды, равное [H + ] · [OH − ] и равно 10 −14 моль²/л² (при 25 °C).

Если концентрации двух видов ионов в растворе окажутся одинаковыми, в таком случае говорится, что у раствора нейтральная реакция. При добавлении кислоты к воде, концентрация ионов водорода возрастает, а концентрация гидроксид-ионов понижается, при добавлении основания — напротив, увеличивается содержание гидроксид-ионов, а концентрация ионов водорода уменьшается. Когда [H + ] > [OH − ] говорится, что раствор оказывается кислым, а при [OH − ] > [H + ] — щелочным.

Читайте также:  Стафилококковая вакцина способ получения микробиология

Чтоб было удобнее представлять, для избавления от отрицательного показателя степени, вместо концентраций ионов водорода используют их десятичный логарифм, который берется с противоположным знаком, являющийся водородным показателем — pH.

.

Показатель основности раствора pOH .

Немного меньшую популяризацию имеет обратная pH величина — показатель основности раствора, pOH, которая равняется десятичному логарифму (отрицательному) концентрации в растворе ионов OH − :

как во всяком водном растворе при 25 °C , значит, при этой температуре:

.

Значения pH в растворах различной кислотности.

  • Вразрез с распространённым мнением, pH может изменяться кроме интервала 0 — 14, также может и выходить за эти пределы. Например, при концентрации ионов водорода [H + ] = 10 −15 моль/л, pH = 15, при концентрации ионов гидроксида 10 моль /л pOH= −1.

Т.к. при 25 °C (стандартных условиях) [H + ] [OH − ] = 1014 , то ясно, что при такой температуре pH + pOH = 14.

Т.к. в кислых растворах [H + ] > 10 −7 , значит, у кислых растворов pH 7, pH нейтральных растворов равняется 7. При более высоких температурах константа электролитической диссоциации воды увеличивается, значит, увеличивается ионное произведение воды, тогда нейтральной будет pH = 7 (что соответствует одновременно возросшим концентрациям как H + , так и OH − ); с понижением температуры, наоборот, нейтральная pH увеличивается.

Методы определения значения pH .

Существует несколько методов определения значения pH растворов. Водородный показатель приблизительно оценивают при помощи индикаторов, точно измерять при помощи pH-метра либо определять аналитическим путём, проводя кислотно-основное титрование.

  1. Для грубой оценки концентрации водородных ионов часто используют кислотно-основные индикаторы — органические вещества-красители, цвет которых зависит от pH среды. Самые популярные индикаторы: лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и др. Индикаторы могут быть в 2х по-разному окрашенных формах — или в кислотной, или в основной. Изменение цвета всех индикаторов происходит в своём интервале кислотности, зачастую составляющем 1–2 единицы.
  2. Для увеличения рабочего интервала измерения pH применяют универсальный индикатор, который является смесью из нескольких индикаторов. Универсальный индикатор последовательно изменяет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным способом затруднено для мутных либо окрашенных растворов.
  3. Применение специального прибора — pH-метра — дает возможность измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH), чем при помощи индикаторов. Ионометрический метод определения pH основывается на измерении милливольтметром-ионометром ЭДС гальванической цепи, которая включает стеклянный электрод, потенциал которого зависим от концентрации ионов H + в окружающем растворе. Способ обладает высокой точностью и удобством, особенно после калибровки индикаторного электрода в избранном диапазоне рН, что дает измерять pH непрозрачных и цветных растворов и поэтому часто применяется.
  4. Аналитический объёмный методкислотно-основное титрование — тоже даёт точные результаты определения кислотности растворов. Раствор известной концентрации (титрант) каплями добавляют к раствору, который исследуется. При их смешивании происходит химическая реакция. Точка эквивалентности — момент, когда титранта точно хватает, для полного завершения реакции, — фиксируется при помощи индикатора. После этого, если известна концентрация и объём добавленного раствора титранта, определяется кислотность раствора.
  5. Влияние температуры на значения pH:

0,001 моль/Л HCl при 20 °C имеет pH=3, при 30 °C pH=3,

0,001 моль/Л NaOH при 20 °C имеет pH=11,73, при 30 °C pH=10,83,

Влияние температуры на значения pH объясняют разчной диссоциацией ионов водорода (H + ) и не есть ошибкой эксперимента. Температурный эффект нельзя компенсировать за счет электроники pH-метра.

Роль pH в химии и биологии.

Кислотность среды имеет важное значение для большинства химических процессов, и возможность протекания либо результат той или иной реакции зачастую зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований либо на производстве применяют буферные растворы, позволяющие сохранять почти постоянное значение pH при разбавлении либо при добавлении в раствор маленьких количеств кислоты либо щёлочи.

Водородный показатель pH часто применяют для характеристики кислотно-основных свойств разных биологических сред.

Для биохимических реакций сильное значение имеет кислотность реакционной среды, протекающих в живых системах. Концентрация в растворе ионов водорода зачастую оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается под действием буферных систем организма.

В человеческом организме в разных органах водородный показатель оказывается разным.

Некоторые значения pH.

Источник

Оцените статью
Разные способы