Способы определения ионизирующего излучения

2. Методы обнаружения и измерения ионизирующих излучений, классификация приборов

При взаимодействии радиоактивных излучений со средой происходит ионизация и возбуждение ее нейтральных атомов и молекул. Эти процессы приводят к существенным изменениям физико-химических свойств облучаемой среды, которые можно регистрировать. В зависимости от того, какое физико-химическое явление регистрируется, различают следующие методы измерения ионизирующих излучений: фотографический, химический, люминесцентный, сцинтилляционный, ионизационный.

Фотографический методоснован на измерении степени почернения фотоэмульсии.Под воздействием ионизирующих излучений молекулы бромистого серебра, содержащегося в фотоэмульсии, распадаются на серебро и бром. При этом образуются мельчайшие кристаллики серебра, которые и вызывают почернение фотопленки при ее проявлении. Плотность почернения пропорциональна дозе облучения. Сравнивая плотность почернения с эталоном, определяют дозу облучения, полученную пленкой.

Химический методоснован на том, что молекулы некоторых веществ в результате воздействия ионизирующих излучений распадаются, образуя новые химические соединения. Количество вновь образованных химических веществ можно определить различными способами. Наиболее удобным для этого является способ, основанный на изменении плотности окраски реактива, с которым вновь образованное химическое соединение вступает в реакцию. Так, хлороформ при облучении разлагается с образованием соляной кислоты, которая дает цветную реакцию с красителем, добавленным к хлороформу. По плотности окраски судят о дозе облучения.

Люминесцентный метод основан на способности некоторых веществ (активированное серебро, метафосфорное стекло, фтористый кальций) накапливать энергию от ионизирующих излучений. Затем при нагревании или освещении ультрафиолетовыми лучами они отдают накопленную энергию, которую можно измерить в лаборатории (термолюминесцентные и стеклянные дозиметры).

Сцинтилляционный метод основан на способности некоторых веществ (сернистый цинк, йодистый натрий, вольфрамат кальция и др.) испускать фотоны видимого света под воздействием радиоактивного излучения.Фотоны видимого света улавливаются специальным прибором – так называемым фотоэлектронным умножителем, способным регистрировать каждую вспышку.

Ионизационный метод основан на том, что под воздействием радиоактивных излучений в изолированном объеме происходит ионизация воздуха или газа. Если в облучаемом объеме создать электрическое поле, то под его воздействием электроны, имеющие отрицательный заряд, будут перемещаться к аноду, а положительно заряженные ионы – к катоду, т.е. между электродами будет проходить электрический ток, называемый ионизационным током. Чем больше интенсивность радиоактивных излучений, тем выше сила ионизационного тока. Это дает возможность, измеряя силу ионизационного тока, определять интенсивность радиоактивных излучений. Практически этот метод воплощен в виде специальных устройств – ионизационных камер и газоразрядных счетчиков.

Приборы, предназначенные для обнаружения и измерения радиоактивных излучений, называются дозиметрическими.

По назначению все приборы разделяются на индикаторы, рентгенметры, радиометры и дозиметры (комплекты измерителей доз).

Индикаторы предназначены для обнаружения радиоактивного излучения и ориентировочной оценки мощности дозы гамма-излучений. Эти приборы имеют простейшие электрические схемы со световой и звуковой сигнализацией. К этой группе относят ДП-64 и др.

Рентгенометры служат для измерений мощности дозы гамма- и рентгеновского излучения (уровня радиации). Сюда относят приборы ДП-5В, МКС-АТ6130А, ИМД-7 и др.

Радиометрами обнаруживают и определяют степень радиоактивного загрязнения поверхностей оборудования, одежды, продуктов и др. К этой группе относят приборы СЗБ-04, РКГ-0,1, КРВП-ЗАБ и др.

Дозиметры (комплекты измерителей доз) предназначены для определения суммарной дозы облучения, получаемой людьми за время нахождения их в районе действия, главным образом гамма-излучений. К этой группе относят приборы ДП-22В (ДП-24), ИД-1 и др.

Источник

МЕТОДЫ ИЗМЕРЕНИЯ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ

Методы измерения ионизирующих излучений основаны на различных физико-химических принципах.

В основе ионизационного методалежит явление ионизации газа в камере при взаимодействии излучения с веществом. Для измерения используются явления электропроводности ионизированного газа. В результате возникает ток между вмонтированными в камеру электродами, к которым подведено напряжение. В зависимости от режима работы приборы, основанные на появлении ионизационного тока в газах, могут использоваться для измерения плотности потоков частиц (пропорциональные счетчики, счетчики Гейгера-Мюллера) и для измерения мощности дозы и дозы излучения (ионизационные камеры).

Химические методыдозиметрии основаны на измерении выхода радиационно-химических реакций, возникающих под действием ионизирующих излучений. Так, при действии излучений на воду образуются свободные радикалы Н + и ОН + . Продукты радиолиза воды могут взаимодействовать с растворенными в ней веществами, вызывая различные окислительно-восстановительные реакции, сопровождающиеся изменением цвета индикатора (например, реактива Грисса для нитратного метода). В частности, в основе работы ферросульфатного дозиметра лежит реакция:

Читайте также:  Удаление волос древние способы

Fe 2+ +ОН + →Fe 3+ +ОН — ,

а при работе нитратного дозиметра

Химические методы дозиметрии не обязательно связаны с водными растворами. Для этих целей применяются также органические растворы, изменяющие цвет пленки или стекла. Химические методы используются, как правило, для измерения дозы излучения.

Одним из вариантов химического метода является фотографический метод. В его основе лежит восстановление атомов металлического серебра из галоидной соли под влиянием излучений. Плотность почернения фотопленки после проявления зависит от дозы излучения. Данный метод часто используется в приборах контроля профессионального облучения.

Сцинтилляционные методыоснованы на регистрации вспышек света, возникающих при взаимодействии излучения с некоторыми органическими и неорганическими веществами (антрацен, стильбен, сернистый цинк и др.). Эти методы используют в приборах, предназначенных для измерения потоков фотонов и частиц.

Сущность люминесцентных методовсостоит в том, что под действием ионизирующего излучения в некоторых твердотельных изоляторах (кристаллах и стеклах) носители электрических зарядов (электроны и дырки) изменяют свое положение и частично задерживаются в местах, где имеются дефекты кристаллической решетки с соответствующими максимумами или минимумами электрического поля. Центры, образованные в результате захвата носителей заряда, обладают некоторыми разрешенными энергетическими уровнями, между которыми возможны квантовые переходы носителя заряда, соответствующие испусканию или поглощению энергии.

Это может отражаться в изменении оптических свойств (цвета и оптической плотности) стекла, в появлении способности к люминесцентному возбуждению под действием видимого и ультрафиолетового света (радиофотолюминесценции), в излучении световых квантов при освобождении носителей зарядов из центров-ловушек под действием теплового возбуждения (радиотермолюминесценции). Интенсивность возникающей люминесценции пропорциональна дозе излучения, в связи с чем эти методы применяются для измерения дозы излучения.

Для измерения доз нейтронов применяют наборы активационных детекторов, в которых поток и доза нейтронов определяются по наведенной в разных веществах активности. С той же целью применяются трековые детекторы, работа которых основана на регистрации следов тяжелых заряженных частиц, образующихся в веществе под действием нейтронов. Такими частицами могут быть осколки деления нептуния, изотопов урана в специальной пластинке — радиаторе, подвергнутой действию нейтронов. Следы образуют на специальной пленке — детекторе, находящейся в контакте с радиатором. Треки становятся видимыми после травления детектора (например, щелочью) и учитываются под микроскопом. Трековый метод,так же как и активационный метод, позволяет оценить флюенсы нейтронов в определенных энергетических диапазонах с последующим расчетным определением дозы. Из-за своей сложности эти методы применяются главным образом в лабораторных условиях.

Существуют и другие методы дозиметрии, применяемые в научных исследованиях и гигиеническом нормировании профессионального об­лучения. Некоторые из них, например, основанные на изменении элект­рических свойств полупроводников при действии излучения, перспек­тивны для разработки полевых и индивидуальных средств дозиметрии.

Источник

Методы обнаружения и измерения ионизирующих излучений

Ионизирующие излучения невидимы, не имеют ни цвета, ни запаха или других признаков, которые указали бы человеку на их наличие или отсутствие. Поэтому их обнаружение и измерение производят косвенным путем на основании какого-либо свойства. Как правило, для определения уровней радиации, степени радиоактивности или дозы излучения используют один из методов: физический, химический, фотографический, биологический или математический (расчетный).

В основе работы дозиметрических и радиометрических приборов используются следующие методы индикации:

— ионизационный, основанный на свойстве, способности этих излучений ионизировать любую среду, через которую они проходят, в том числе и детекторное (улавливающее) устройство прибора. Измеряя ионизационный ток, получают представление об интенсивности радиоактивных излучений;

— сцинтиляционный, регистрирующий вспышки света, возникающие в сцинтиляторе (детекторе) под действием ионизирующих излучений, которые фотоэлектронным умножителем (ФЭУ) преобразуются в электрический ток. Измеряемый анодный ток ФЭУ (токовый режим) и скорость счета (счетчиковый режим) пропорциональны уровням радиации;

— люминисцентный, базирующийся на эффектах радиофотолюминисценции (ФЛД) и радиотеримолюминисценции (ТЛД). В первом случае под действием ионизирующих излучений в люминофоре создаются центры фотолюминисценции, содержащие атомы и ионы серебра, которые при освещении ультрафиолетовым светом вызывают видимую люминисценцию, пропорциональную уровням радиации. Дозиметры ТЛД под действием теплового воздействия (нагрева) преобразуют поглощенную энергию ионизирующих излучений в люминицентную, интенсивность которой пропорциональна дозе ионизирующих излучений;

Читайте также:  Способы обслуживание тяговых плеч

— фотографический — один из первых методов регистрации ионизирующих излучений, позволивший французскому ученому Э. Беккерелю открыть в 1896 г. явление радиоактивности. Этот метод дозиметрии основан на свойстве ионизирующих излучений воздействовать на чувствительный слой фотоматериалов аналогично видимому свету. По степени почернения (плотности) можно судить об интенсивности воздействующего на пленку ионизирующего излучения с учетом времени этого воздействия;

— химический, основанный на измерении выхода радиационно-химических реакций, протекающих под действием ионизирующих излучений. Известно значительное количество различных веществ, изменяющих свою окраску (степень окраски) или цвет в результате окислительных или восстановительных реакций, что можно соизмерять со степенью или плотностью ионизации. Данный метод используют при регистрации значительных уровней радиации;

— калориметрический, базирующийся на измерении количества теплоты, выделяемой в детекторе при поглощении энергии ионизирующих излучений, поглащаемая веществом, в конечном итоге преобразуются в теплоту при условии, что поглащающее вещество является химически инертным к излучению и это пропорционально интенсивности излучений;

— нейтронно-активационный, связанны с измерением наведенной активности и в которых случаях являющийся единственно возможным методом регистрации, особенно слабых нейтронных потоков, так как наведенная ими активность оказывается слишком малой для надежных измерений обычными методами. Кроме того, этот метод удобен при оценке доз в аварийных ситуациях, когда наблюдается кратковременное облучение большими потоками нейтронов.

В биологических методах дозиметрии использована способность излучений изменять биологические объекты. Величину дозы оценивают по уровню летальности животных, степени лейкопении, количеству хромосомных аббераций, изменению окраски и гиперемии кожи, выпадению волос, появлению в моче дезоксицитидина и др. Биологические методы не очень точны и менее чувствительны по сравнению с физическими.

В расчетных методах дозу излучения определяют путем математических вычислений. Это единственно возможный метод определения дозы от инкорпорированных радионуклидов, т. е. попавших внутрь организма.

Приборы для обнаружения и измерения ионизирующих излучений

Принципиальная схема любого дозиметрического и радиометрического прибора одинакова. Она включает три обязательных блока: детекторное устройство (детектор), регистрирующий прибор (индикатор) и блок питания (аккумуляторы, батарейки, элементы, электросеть и пр.). Одним из важнейших элементов приведенной схемы является детекторное устройство прибора, которое улавливает ионизирующие излучения от измеряемых объекте.

В качестве детектора чаще всего используют ионизационные камеры; горизонтальные или торцевые счетчики; кристаллы или другие люминофоры, светящиеся под воздействием ионизирующих излучений; фотосоставы или химические растворы, изменяющие свой цвет или степень окраски в зависимости от величины или интенсивности излучений и др.

Приборы, используемые для измерения ионизирующих излучений, классифицируют по различным признакам. Их классифицируют по назначению:

1. Индикаторы — простейшие, регистрируют факт наличия излучения. Детектор в них чаще всего газоразрядный счетчик (для регистрации бета-излучения СТС-5, СТС-6, СБМ-10, гамма-излучения СИ11Г, 13 Г, 19. 25Г).

2. Дозиметры — служат для получения измерительной информации о поглощенной дозе или мощности дозы (ДП-70МП, комплект индивидуальных измерителей доз ИД-11).

3. Рентгенометры — измеряют мощность дозы гамма- и рентгеновского излучения. Детектор в них — ионизационный счетчик (измеритель мощности дозы ДП-5В (А,Б), бортовой рентгенметр ДП-ЗБ, измерители мощности дозы ИМД-21, ИМД-22).

4. Радиометры — измеряют активность (удельную, поверхностную, объемную). Детекторы в них — ионизационные и сцинтилляционные счетчики (портативный радиометр РКБ-05П, сцинтилляционный СРП-88Н, портативный сигнальный интеллектуальный дозиметр-радиометр МКС-09П).

5. Спектрометры — определяют энергию частиц, энергетический спектр, тип радионуклидов. (α-, β-, φ-спектрометры. На практике чаще всего — комбинированные).

Кроме того, существуют универсальные приборы, которые совмещают функции дозиметра, радиометра и спектрометра.

В зависимости от конструктивных особенностей и характера проведения контроля приборы делятся на:

1. Носимые приборы для индивидуального дозиметрического контроля;

2. Переносные приборы для группового дозиметрического или радиационного технологического контроля;

3. Стационарные одноканальные приборы и многоканальные установки для непрерывного дистанционного дозиметрического и радиационного технологического контроля. Их называют также системами радиационного контроля.

Аварии на радиационноопасных объектах экономики

Классификация аварий на РОО

Радиационноопасный объект (РОО) — территориально обособленный или технологически независимый объект использования атомной энергии, на котором проводятся работы с радионуклидными источниками, РВ (радиоактивными веществами) и РАО (радиоактивными отходами), включающий в себя работников (персонал) и оборудование для проведения такого рода работ.

К типовым радиационноопасным объектам относятся:

Читайте также:  Способы организации читательской деятельности

— предприятия по изготовлению ядерного топлива;

— по переработке отработавшего топлива и захоронению радиоактивных отходов;

— научно-исследовательские и проектные организации, име­ющие ядерные реакторы;

— ядерные энергетические установки на транспорте;

РОО по потенциальной радиационной опасности делятся на следующие категории:

1 категория — РОО, при авариях, на которых возможно их радиационное воздействие на население и могут потребоваться меры по его защите;

2 категория — РОО, радиационное воздействие которых при аварии ограничивается территорией санитарно-защитной зоны;

3 категория— РОО, радиационное воздействие которых при аварии ограничивается территорией РОО;

4 категория — РОО, радиационное воздействие которых при аварии ограничивается помещениями, где проводятся работы с источниками излучения.

Категория РОО— характеристика РОО по степени его потенциальной опасности для населения в условиях нормальной эксплуатации и при возможной аварии.

Анализ аварий на РОО в 14 странах дал возможность установить основные причины их возникновения и долю каждой из них в общем числе аварий:

— ошибки в проекте, дефекты оборудования — 30,7 %;

— износ и коррозия оборудования — 25,5 %;

— ошибки оператора — 17,5 %;

— ошибки в эксплуатации — 14,7 %;

— прочие причины (стихийные бедствия, диверсии, теракты и т.д.) — 11,6 %.

С целью заблаговременной разработки мер, реализация которых в случае аварии должна уменьшить вероятные последствия и содействовать успешной их ликвидации аварии классифицируют по определённым признакам.

Например, аварии, связанные с нарушением нормальной эксплуатации РОО, подразделяются на проектные и запроектные.

Проектная авария — авария, для которой проектом определены исходные события и конечные состояния, в связи с чем предусмотрены системы безопасности.

Запроектная авария — вызывается не учитываемыми для проектных аварий исходными событиями и приводит к тяжелым последствиям. При этом может произойти выход радиоактивных продуктов в количествах, приводящих к радиоактивному загрязнению прилегающей территории, возможному облучению населения выше установленных норм. В тяжелых случаях могут произойти тепловые и ядерные взрывы.

Также для характеристики и информирования населения об аварии на АЭС МАГА­ТЭ (Международным агентством по атомной энергетике) была разработана и внедрена в странах мира Международная шкала тяжести событий на АЭС (табл. 6).

Характеристика аварии Класс Характеристика воздействия на население и окружающую среду
Тяжелая авария Сильный выброс: тяжёлые последствия для здоровья населения и окружающей среды
Серьезная авария Значительный выброс: требуется полномасштабное применение плановых мероприятий по восстановлению
Авария с риском для окружающей среды Ограниченный выброс: требуется частичное применение плановых мероприятий по восстановлению
Авария без значительного риска для окружающей среды Минимальный выброс: облучение населения в пределах допустимого
Серьезный инцидент Пренебрежительно малый выброс: облучение населения ниже допустимого предела
Инцидент Меры по защите населения не требуются
Аномальная ситуация, то есть отклонение от разрешенного режима эксплуатации Меры по защите населения не требуются
Событие, которое с точки зрения безопасности не имеет значения Меры по защите населения не требуются

Первые три уровня называют происшествиями (инцидентами), а последние четыре уровня – авариями. При этом значительную опасность для здоровья персо­нала, населения и ОПС представляют лишь события, отнесенные к 4,5,6,7-му уров­ням. Например, катастрофа на ЧАЭС и Фукусиме относится к 7-му уровню; авария на АЭС «Три-Майл-Айленд» (США) — к 5-му уровню; подавляющее большинство аварий на АЭС, о которых сообщалось в прессе, относится к 1,2-му уровням шкалы; авария на Смоленской АЭС и Ленинградской АЭС (24 марта 1992 г.) — 3 уровень, а авария на Ново-Воронежской АЭС (3 ноября 2004 г.) – 0 уровень.

В зависимости от границ зон распространения радиоактивных веществ и радиационных последствий потенциальные аварии на АЭС делятся на шесть типов: локальная, местная, территориальная, региональная, федеральная, трансграничная.

Если при региональной аварии количество людей, получивших дозу облучения выше уровней, установленных для нормальной эксплуатации, может превысить 500 человек, или количество людей, у которых могут быть нарушены условия жизнедеятельности, превысит 1 000 человек, или материальный ущерб превысит 5 млн. минимальных размеров оплаты труда, то такая авария будет федеральной.

При трансграничных авариях радиационные последствия аварии выходят за территорию Российской Федерации, либо данная авария произошла за рубежом и затрагивает территорию Российской Федерации.

Источник

Оцените статью
Разные способы