Способы определения геологического возраста горных пород

Мир науки

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Физика — рефераты, конспекты, шпаргалки, лекции, семинары

Методы определения возраста горных пород

В настоящее время возраст горных пород определяют тремя методами: стратиграфическим, палеонтологическим и абсолютным.

Стратиграфический (лат. «стратум» — слой, «графос» — описание) метод. Это относительный метод, суть которого

заключается в том, что относительный возраст горных пород определяют по тому месту, где залегает тот или иной пласт или слой в земной коре, есть в геологическом разрезе. Действительно, и горная порода, которая залегает внизу образовалась раньше, чем та, что залегает наверху. Но при тектонических процессах, когда земная кора приходит в движение, определить относительный возраст горных пород невозможно. Например, в Кузбассе некоторые пласты осадочных пород залегают под углом 89 — 90 °. Таким образом, стратиграфический метод применяется только для осадочных горных пород при их спокойном залегании. Вычислить абсолютный возраст горных пород этим методом невозможно, поскольку скорость накопления осадков в земной коре очень неодинакова.

Палеонтологический (греч. «палайос» — древний, «отоси» — существо, «логос» — учение) метод. Суть этого метода заключается в том, что возраст горных пород определяется по остаткам в них вымерших организмов — растений и животных. Основателями этого метода были английский инженер-Гидростроитель В. Смит и французский ученый Ж. Кювье.

При раскопках в пластах горных пород встречаются остатки организмов разной степени совершенства. Чем совершеннее остатки организмов, тем моложе горная порода. Например, и порода, где обнаружили кости млекопитающих, значительно моложе той, где нашли остатки динозавров. Конечно, этот метод тоже является относительным, но более совершенным, потому что не зависит уже от условий залегания горных пород.

Абсолютный метод. Является наиболее точным и позволяет определить возраст горных пород в годах. Начал применяться после открытия в 1396 г. Анри Беккерель явления радиоактивности. Установлено, что во время радиоактивного распада одни элементы превращаются в другие более устойчивы, а период их распада вообще не зависит ни от внутренних, ни от внешних обстоятельств (температуры, давления, влажности и т.д.). Зная соотношение количества материнского элемента остался в породе, и продукта конечного распада, срок его преобразования, можно определить абсолютный возраст горных пород. Так, и 0 г 238U за I млрд. лет превращается в 0,116 г 206Рb. Остаток 238U — 0,865 г. Остальная масса расходуется на излучение. Значение периодов полураспада приведены в табл. 4.1.

Урано-свинцовый, торий-свинцовый методы применяются для определения возраста древних магматических и метаморфических горных пород, получивших название старожилов. Этими методами были определены, что возраст известных на Земле пород — старожилов составляет 3,8 млрд. лет (Южная Америка). Это меньше некие метеоритов (4,7 млрд. лет) и некоторых пород Луны (до 4,7 млрд. лет). Согласно возраст солнечной системы оценивается величиной в 5 млрд. лет.

Источник

Основы нефтегазового производства

Введение в геологию

1. Внутреннее строение Земли

Химический состав Земли

Химический состав Земли схож с составом других планет земной группы, например Венеры или Марса (см. рисунок 1).

В целом преобладают такие элементы, как железо, кислород, кремний, магний, никель. Содержание легких элементов невелико. Средняя плотность вещества Земли 5,5 г/см3.

О внутреннем строении Земли достоверных данных весьма мало. Рассмотрим рис. 2. Он изображает внутреннее строение Земли. Земля состоит из земной коры, мантии и ядра.

Рис. 1. Химический состав Земли

Ядро

Ядро расположено в центре Земли (см.рис 3), его радиус составляет около 3,5 тыс км. Температура ядра достигает 10 000 К, т. е. она выше, чем температура внешних слоев Солнца, а его плотность составляет 13 г/см3 (сравните: вода — 1 г/см3). Ядро предположительно состоит из сплавов железа и никеля.

Внешнее ядро Земли имеет большую мощность, чем внутреннее (радиус 2200 км) и находится в жидком (расплавленном) состоянии. Внутреннее ядро подвержено колоссальному давлению. Вещества, слагающие его, находятся в твердом состоянии.

Рис. 3. Строение Земли: ядро, мантия и земная кора

Мантия

Мантия — геосфера Земли, которая окружает ядро и составляет 83 % от объема нашей планеты (см. рис. 3). Нижняя ееграница располагается на глубине 2900 км. Мантия разделяется на менее плотную и пластичную верхнюю часть (800-900 км), из которой образуется магма (в переводе с греческого означает «густая мазь»; это расплавленное вещество земных недр — смесь химических соединений и элементов, в том числе газов, в особом полужидком состоянии); и кристаллическую нижнюю, тол- шиной около 2000 км.

Земная кора

Земная кора — внешняя оболочка литосферы (см. рис. 3). Ее плотность примерно в два раза меньше, чем средняя плотность Земли, — 3 г/см3.

От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936).

Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км.

Ниже литосферы располагается астеносфера — менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера — это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность.

Состав и строение земной коры

По сравнению с мантией и ядром земная кора представляет собой очень тонкий, жесткий и хрупкий слой. Она сложена более легким веществом, в составе которого в настоящее время обнаружено около 90 естественных химических элементов. Эти элементы не одинаково представлены в земной коре. На семь элементов — кислород, алюминий, железо, кальций, натрий, калий и магний — приходится 98 % массы земной коры (см. рис. 5).

Своеобразные сочетания химических элементов образуют различные горные породы и минералы. Возраст самых древних из них насчитывает не менее 4,5 млрд лет.

Рис. 4. Строение земной коры

» alt=»» width=»311″ height=»300″/>

Рис. 5. Состав земной коры

Минерал — это относительно однородное по своему составу и свойствам природное тело, образующееся как в глубинах, так и на поверхности литосферы. Примерами минералов служат алмаз, кварц, гипс, тальк и др. (Характеристику физических свойств различных минералов вы найдете в приложении 2.) Состав минералов Земли приведен на рис. 6.

» alt=»» width=»456″ height=»261″/>

Рис. 6. Общий минеральный состав Земли

Горные породы состоят из минералов. Они могут слагаться как из одного, так и из нескольких минералов.

Осадочные горные породы — глина, известняк, мел, песчаник и др. — образовались путем осаждения веществ в водной среде и на суше. Они лежат пластами. Геологи называют их страницами истории Земли, так как но ним можно узнать о природных условиях, существовавших на нашей планете в давние времена.

Читайте также:  Область определения функции способы ее задания примеры

Среди осадочных горных пород выделяют органогенные и неорганогенные (обломочные и хемогенные).

Органогенные горные породы образуются в результате накопления останков животных и растений.

Обломочные горные породы образуются в результате выветривания, псрсотложсния с помощью воды, льда или ветра продуктов разрушения ранее возникших горных пород (табл. 1).

Таблица 1. Обломочные горные породы в зависимости от размеров обломков

Размер облом кон (частиц)

Песок и песчаники

Хемогенные горные породы формируются в результате осаждения из вод морей и озер растворенных в них веществ.

В толще земной коры из магмы образуются магматические горные породы (рис. 7), например гранит и базальт.

Осадочные и магматические породы при погружении на большие глубины под влиянием давления и высоких температур подвергаются значительным изменениям, превращаясь в метаморфические горные породы. Так, например, известняк превращается в мрамор, кварцевый песчаник — в кварцит.

В строении земной коры выделяют три слоя: осадочный, «гранитный», «базальтовый».

Осадочный слой (см. рис. 8) образован в основном осадочными горными породами. Здесь преобладают глины и глинистые сланцы, широко представлены песчаные, карбонатные и вулканогенные породы. В осадочном слое встречаются залежи таких полезных ископаемых, как каменный уголь, газ, нефть. Все они органического происхождения. Например, каменный уголь -это продукт преобразования растений древних времен. Мощность осадочного слоя колеблется в широких пределах — от полного отсутствия в некоторых районах суши до 20-25 км в глубоких впадинах.

» alt=»» width=»480″ height=»316.9111969112″/>

Рис. 7. Классификация горных пород по происхождению

«Гранитный» слой состоит из метаморфических и магматических пород, близких по своим свойствам к граниту. Наиболее распространены здесь гнейсы, граниты, кристаллические сланцы и др. Встречается гранитный слой не везде, но на континентах, где он хорошо выражен, его максимальная мощность может достигать нескольких десятков километров.

«Базальтовый» слой образован горными породами, близкими к базальтам. Это метаморфизованные магматические породы, более плотные по сравнению с породами «гранитного» слоя.

Мощность и вертикальная структура земной коры различны. Выделяют несколько типов земной коры (рис. 8). Согласно наиболее простой классификации различают океаническую и материковую земную кору.

Континентальная и океаническая кора различны по толщине. Так, максимальная толщина земной коры наблюдается под горными системами. Она составляет около 70 км. Под равнинами мощность земной коры составляет 30-40 км, а под океанами она наиболее тонкая — всего 5-10 км.

» alt=»» width=»480″ height=»441.41176470588″/>

Рис. 8. Типы земной коры: 1 — вода; 2- осадочный слой; 3 — переслаивание осадочных пород и базальтов; 4 — базальты и кристаллические ультраосновные породы; 5 — гранитно-метаморфический слой; 6 — гранулитово-базитовый слой; 7 — нормальная мантия; 8 — разуплотненная мантия

Различие континентальной и океанической земной коры по составу пород проявляется в том, что гранитный слой в океанической коре отсутствует. Да и базальтовый слой океанической коры весьма своеобразен. По составу пород он отличен от аналогичного слоя континентальной коры.

Граница суши и океана (нулевая отметка) не фиксирует перехода континентальной земной коры в океаническую. Замещение континентальной коры океанической происходит в океане примерно на глубине 2450 м.

» alt=»» width=»312″ height=»213″/>

Рис. 9. Строение материковой и океанической земной коры

Выделяют и переходные типы земной коры — субокеаническую и субконтинентальную.

Субокеаническая кора расположена вдоль континентальных склонов и подножий, может встречаться в окраинных и средиземных морях. Она представляет собой континентальную кору мощностью до 15-20 км.

Субконтинентальная кора расположена, например, на вулканических островных дугах.

По материалам сейсмического зондирования — скорости прохождения сейсмических волн — мы получаем данные о глубинном строении земной коры. Так, Кольская сверхглубокая скважина, впервые позволившая увидеть образцы пород с глубины более 12 км, принесла много неожиданного.

Предполагалось, что на глубине 7 км должен начаться «базальтовый» слой. В действительности же он обнаружен не был, а среди горных пород преобладали гнейсы.

Изменение температуры земной коры с глубиной. Приповерхностный слой земной коры имеет температуру, определяемую солнечным теплом. Это гелиометрический слой (от греч. гелио — Солнце), испытывающий сезонные колебания температуры. Средняя его мощность — около 30 м.

Ниже расположен еще более тонкий слой, характерной чертой которого является постоянная температура, соответствующая среднегодовой температуре места наблюдений. Глубина этого слоя увеличивается в условиях континентального климата.

Еще глубже в земной коре выделяется геотермический слой, температура которого определяется внутренним теплом Земли и с глубиной возрастает.

Увеличение температуры происходит главным образом за счет распада радиоактивных элементов, входящих в состав горных пород, прежде всего радия и урана.

Величину нарастания температуры горных пород с глубиной называют геотермическим градиентом. Он колеблется в довольно широких пределах — от 0,1 до 0,01 °С/м — и зависит от состава горных пород, условий их залегания и ряда других факторов. Под океанами температура с глубиной нарастает быстрее, чем на континентах. В среднем с каждыми 100 м глубины становится теплее на 3 °С.

Величина, обратная геотермическому градиенту, называется геотермической ступенью. Она измеряется в м/°С.

Тепло земной коры — важный энергетический источник.

Часть земной коры, простирающаяся глубин, доступных для геологического изучения, образует недра Земли. Недра Земли требуют особой охраны и разумного использования.

Источник

Возраст горных пород

Способы определения возраста горных пород

В настоящее время возраст горных пород определяют тремя методами: стратиграфическим, палеонтологическим и абсолютным.

Стратиграфический (лат. «стратум» — слой, «графос» — описание) метод. Это относительный метод, суть которого заключается в том, что относительный возраст горных пород определяют по тому месту, где залегает тот или иной пласт или слой в земной коре, есть в геологическом разрезе. Действительно, и горная порода, которая залегает внизу образовалась раньше, чем та, что залегает наверху.

Но при тектонических процессах, когда земная кора приходит в движение, определить относительный возраст горных пород невозможно.

Например, в Кузбассе некоторые пласты осадочных пород залегают под углом 89 — 90 °. Таким образом, стратиграфический метод применяется только для осадочных горных пород при их спокойном залегании. Вычислить абсолютный возраст горных пород этим методом невозможно, поскольку скорость накопления осадков в земной коре очень неодинакова.

Палеонтологический (греч. «палайос» — древний, «отоси» — существо, «логос» — учение) метод. Суть этого метода заключается в том, что возраст горных пород определяется по остаткам в них вымерших организмов — растений и животных.

Основателями этого метода были английский инженер-Гидростроитель В. Смит и французский ученый Ж. Кювье.

При раскопках в пластах горных пород встречаются остатки организмов разной степени совершенства. Чем совершеннее остатки организмов, тем моложе горная порода. Например, и порода, где обнаружили кости млекопитающих, значительно моложе той, где нашли остатки динозавров.

Конечно, этот метод тоже является относительным, но более совершенным, потому что не зависит уже от условий залегания горных пород.

Абсолютный метод. Является наиболее точным и позволяет определить возраст горных пород в годах. Начал применяться после открытия в 1396 г.

Анри Беккерель явления радиоактивности. Установлено, что во время радиоактивного распада одни элементы превращаются в другие более устойчивы, а период их распада вообще не зависит ни от внутренних, ни от внешних обстоятельств (температуры, давления, влажности и т.д.). Зная соотношение количества материнского элемента остался в породе, и продукта конечного распада, срок его преобразования, можно определить абсолютный возраст горных пород.

Так, и 0 г 238U за I млрд. лет превращается в 0,116 г 206Рb. Остаток 238U — 0,865 г. Остальная масса расходуется на излучение. Значение периодов полураспада приведены в табл. 4.1.

Читайте также:  Каким способ разрешаются конфликты

Урано-свинцовый, торий-свинцовый методы применяются для определения возраста древних магматических и метаморфических горных пород, получивших название старожилов.

Этими методами были определены, что возраст известных на Земле пород — старожилов составляет 3,8 млрд. лет (Южная Америка). Это меньше некие метеоритов (4,7 млрд. лет) и некоторых пород Луны (до 4,7 млрд. лет). Согласно возраст солнечной системы оценивается величиной в 5 млрд.лет.

Понятия об относительном и абсолютном возрасте горных пород. Характеристика методов определения абсолютного геологического возраста пород.

Развитие животного и растительного мира, особенности формирования горных пород в различных геологических эрах.

Основными геологическими графическими документами являются геологическая карта, геологические разрезы и стратиграфические колонки.

Геологическая карта представляет собой изображение на топографической основе границ распространения горных пород на поверхности Земли, разделенных по возрасту и составу.

Геологические карты дают возможность получить представление о составе и формах залегания пород любого участка земной коры. На геологических картах возраст горных пород указывается цветом и индексами соответствующих стратиграфических подразделений.

Магматические интрузивные горные породы на картах показываются ярким цветом.

Геологический разрез— это графическое изображение на вертикальной плоскости пород различного состава и возраста, формы геологических тел, их мощности и характера нарушений.

Геологический разрез дополняет и уточняет геологическую карту, давая наглядное представление об изменении геологического строения с глубиной.

Вертикальный и горизонтальный масштабы геологических разрезов, по возможности, должны быть одинаковы. При необходимости показать структуру маломощных пластов возможно использование разных масштабов (вертикального и горизонтального), но при этом будет происходить искажение условий залегания (при наклонном и складчатом залегании пластов) и рельефа поверхности.

Сводные стратиграфические колонкипредставляют собой графический перечень всех отложений, слагающих участок земной коры, как обнажающихся на поверхности Земли, так и вскрытых скважинами и горными выработками.

Стратиграфическая колонка (рис.1) вычерчивается в виде вертикального столбца, в котором каждая стратиграфическая единица, выделяемая в числе геологических образований данного участка, при согласном залегании отделяется от соседней прямой горизонтальной линией; при несогласном, т.е.

когда наблюдается перерыв в осадконакоплении, — волнистой линией.

Литологический состав горных пород в стратиграфической колонке показывается штриховыми условными обозначениями. Колонка строится в масштабе карты.

При очень большой мощности отдельных стратиграфических подразделений в них допускается пропуск (“разрыв”) внутри однородных слоев (рис.1 — триасовая система, верхний отдел).

Рис.1.Пример стратиграфической колонки.

Обычная первичная форма залегания осадочных горных пород — горизонтально лежащий слой (пласт).

Под слоем (пластом) понимается образование какой-либо осадочной породы (тела), имеющей значительную горизонтальную протяженность, ограниченную примерно параллельными плоскостями напластования, и относительно малые вертикальные размеры.

При рассмотрении слоя как структурного элемента осадочных толщ выделяют подошву (почву) и кровлю слоя, а также его мощность. Кровля слоя является “поверхностью” напластования или ложем для вышележащего слоя.

При горизонтальном залегании слоев различного возраста и литологического состава рисунок геологической карты зависит от расчлененности рельефа и мощности слоев, образующих соответствующий участок земной коры.

Границы (контакты) пластов следуют изгибам рельефа, так как в силу горизонтального залегания подошва и кровля каждого пласта имеют определенную и постоянную высотную отметку.

Ширина выхода (видимая мощность) одного и того же пласта, слоя зависит от крутизны рельефа, и чем положе рельеф, тем шире полоса выхода.

Признак горизонтального залегания постоянство отметок поверхностей разделов геологических тел и подобие геологических границ горизонталям рельефа поверхности.

Контрольные вопросы

Перечислите основные геологические графические документы.

2. Что такое геологический разрез?

3. Каким образом на геологических картах указывается возраст пород?

4. Что называется пластом?

5. Что является признаком горизонтального залегания пород на геологической карте?

Возраст горных пород, геохронология

Изучением продолжительности и последовательности геологических событий занимается геохронология. Она в свою очередь подразделяется: на абсолютную и относительную.

Абсолютная геохронология устанавливает время возникновения горных пород и др.

геологических явлений в астрономических единицах (годах).

Методы определения абсолютного возраста.

1. Метод ленточных глин — основан на явлении изменения состава осадков, которые отлагаются в спокойном водном бассейне при сезонном изменении климата.

За 1 год образуется 2 слоя. В осенне-зимний сезон отлагается слой глинистых пород, а в весенне-летний образуется слой песчаных пород. Зная количество таких пар слоев, можно определить — сколько лет формировалась вся толща.

2.Методы ядерной геохронологии.

Эти методы опираются на явление радиоактивного распада элементов.

Скорость этого распада постоянна и не зависит от каких-либо условий, происходящих на Земле. При радиоактивном распаде происходит изменение массы радиоактивных изотопов и накопление продуктов распада — радиогенных стабильных изотопов. Зная период полураспада радиоактивного изотопа, можно определить возраст минерала его содержащего.

Для этого нужно определить соотношение между содержанием радиоактивного вещества и продукта его распада в минерале.

В ядерной геохронологии основными являются:

Свинцовый метод — используется процесс распада 235U, 238U, 232Th на изотопы 207Pb и 206Pb, 208Pb.

Используются минералы: монацит, ортит, циркон и уранинит. Период полураспада

Калий-аргоновый — при распаде К изотопы 40К (11%) переходят в аргон 40Ar, а остальные в изотоп 40Ca. Поскольку К присутствует в породообразующих минералах (полевые шпаты, слюды, пироксены и амфиболы), метод широко применяется. Период полураспада

Рубидий-стронциевый — используется изотоп рубидия 87Rb с образованием изотопа стронция 87Sr (используемые минералы — слюды содержащие рубидий). Из-за большого периода полураспада (49.9 млрд.лет) применяется для наиболее древних пород земной коры.

Радиоуглеродный — применяется в археологии, антропологии и наиболее молодых отложений Земной коры. Радиоактивный изотоп углерода 14С образуется при реакции космических частиц с азотом 14N и накапливается в растениях. После их гибели происходит распад углерода 14С, и по скорости распада определяют время гибели организмов и возраст вмещающих пород (период полураспада 5.7тыс.лет).

Относительная геохронология определяет возраст пород и последовательность их образования стратиграфическими методами, а раздел геологии, изучающий взаимоотношения горных пород во времени и пространстве называется стратиграфией.

Методы относительной геохронологии подразделяются на палеонтологические и непалентологические.

Палеонтологические методы (биостратиграфия): в основе метода-определения видового состава ископаемых остатков древних организмов и представления об эволюционном развитии органического мира, согласно которого в древних отложениях находятся остатки простых организмов, а в более молодых — организмы сложного строения.

Эта особенность используется для определения возраста пород.

Не палеонтологические методы подразделяются на: литологические, структурно-тектонические и геофизические.

Литологические методы разделения толщ опираются на различия отдельных слоев, составляющих изучаемую толщу по цвету, вещественному составу (минералого-петрографическому), текстурным особенностям.

Структурно-тектонический метод — в его основе лежит представление о существования перерывов в осадконакоплении на крупных участках земной коры.

Перерывы в осадконакоплении наступают тогда, когда участок морского бассейна, где накапливалась осадочная толща, становится приподнятым и на этот период здесь прекращается формирование осадков.

В последующее геологическое время данный участок может вновь начать погружение, снова стать морским бассейном, в котором происходит накопление новых осадочных толщ. Граница между толщами представляет собой поверхность несогласия.

По таким поверхностям проводят расчленение осадочной толщи на пачки и сопоставляют их в соседних разрезах. Толщи, заключенные между одинаковыми поверхностями несогласия рассматриваются как одновозрастные. В отличие от литологического метода структурно-тектонический метод используется для сопоставления крупных стратиграфических подразделений в толщах.

Геофизические методы основаны на сравнении пород по физическим свойствам.

По своей геологической сущности геофизические методы близки минералого-петрографическому методу, поскольку и в этом случае выделяются отдельные горизонты, сопоставляются их физические параметры и по ним проводится корреляция разрезов. Геофизические методы не носят самостоятельного характера, а применяются в комплексе с другими методами.

Рассмотренные методы абсолютной и относительной геохронологии позволили определить возраст и последовательность образования горных пород, а также установить периодичность геологических явлений и выделить этапы в длительной истории Земли.

Читайте также:  Аскорбиновая кислота способ применения для детей

В каждый этап последовательно накапливались толщи пород, и это накопление происходило в определенный промежуток времени. Поэтому всякая геохронологическая классификация содержит двойную информацию и объединяет две шкалы — стратиграфическую и геохронологическую. Стратиграфическая шкала отражает последовательность накопления толщ, а геохронологическая шкала — соответствующий этому процессу период времени.

На основе большого количества данных по различным регионам и континентам была создана общая для земной коры Международная геохронологическая шкала, отражающая последовательность подразделений времени, в течение которых формировались определенные комплексы отложений и эволюцию органического мира.

В стратиграфии подразделения рассматриваются от крупных к мелким:

эонотема — группа — система — отдел -ярус.

Им соответствуют: эон — эра — период — эпоха – век.

Каждое подразделение в геохронологической шкале имеет свое название. Названия происходят от греческих слов (археос -древний и т.д.) или от места, где они впервые были выделены. Кроме того, каждое подразделение имеет свой цвет и индекс, который состоит из начальных букв названия подразделения и цифр. Например: alQIII означает – аллювиальные (речные) позднечетвертичные отложения, eC1 – элювиальные раннекаменноугольные отложения и т.д.

Такими индексами удобно пользоваться при составлении геологической карты или геологического разреза.

Геологическая карта отражает распространение горных пород и их возраст на поверхности Земли. Поэтому она составляется на топооснове различного масштаба.

Геологические разрезы показывают распространение горных пород от поверхности Земли до определенных глубин, спроектированных на вертикальную плоскость. В зависимости от поставленных геологических задач, разрезы также составляются в различном масштабе.

Таблица 1. Геохронологическая таблица.

Геохронологическая таблица
эон эра (группа) период (система) эпоха (отдел)
Фанерозой Кайнозойская Kz 67 млн.

Четвертичный Q Голоцен Позднечетвертичный Среднечетвертичный Раннечетвертичный QIV QIII QII QI Неогеновый N Верхненеогеновый Ранненеогеновый N2 N1 Палеогеновый (Pg) P Позднепалеогеновый Среднепалеогеновый Раннепалеогеновый (Pg3) P3 (Pg2) P2 (Pg1) P1 Мезозойская Mz 173 млн.

Меловой (Cr) K Верхнемеловой Раннемеловой (Cr2) K2 (Cr1) K1 Юрский J Позднеюрский Среднеюрский Раннеюрский J3 J2 J1 Триасовый T Позднетриасовый Среднетриасовый Раннетриасовый T3 T2 T1 Палеозойская Pz 330 млн.

Пермский P Верхнепермский Раннепермский P2 P1 Каменноугольный C Позднекаменноугольный Среднекаменноугольный Раннекаменноугольный C3 C2 C1 Девонский D Позднедевонский Среднедевонский Раннедевонский D3 D2 D1 Силурийский S Среднесилурийский Раннесилурийский S2 S1 Ордовикский O Позднеордовикский Среднеордовикский Раннеордовикский O3 O2 O1 Кембрийский (Cm) є Позднекембрийский Среднекембрийский Раннекембрийский (Cm3) є3 (Cm2) є2 (Cm1) є1 Криптозой Протерозойская-PR >2100 млн.

Венд Рифей PR3 PR2 PR1

Возраст горных пород и методы его определения

Историю и общие закономерности развития и образования земной коры изучает историческая геология.

Хронология геологических событий в истории Земли, а также возраст земной коры и Земли как планеты интересуют человечество. как из практических, так и теоретических соображений. В настоящее время в истории формирования и развития Земли выделяют два крупных этапа – догеологический и геологический.

Первый этап охватывает длительный промежуток времени – с момента возникновения Земли как планеты (около 6,5–7 млрд. лет назад) и до того времени, когда начали формироваться оболочки Земли (атмосфера, гидросфера, земная кора), т.е. около. 4,5–5 млрд.лет тому назад.

История догеологического этапа не может быть восстановлена геологическими методами, и все представления о нем базируются на общих представлениях о развитии Земли как космического тела. Догеологический этап называют также космическим или планетарным.

Геологический этапначинается с момента появления земной коры, т. е. с того времени, от которого сохранились наиболее древние геологические документы – минералы и горные породы.

Однако известные нам древние минералы и горные породы тоже образовались из каких-то ранее существовавших пород, но по тем или иным причинам не сохранившихся. В связи с этим начало геологического этапа в истории Земли представляет собой только условный момент.

Для выражения времени в истории развития Земли за геологический этап пользуются абсолютной геохронологией и относительной геохронологией.

Абсолютный возраст – это продолжительность существования («жизни») породы, выраженная в годах.

Определение абсолютного времени в геологии стало возможным в XX в.в связи с появлением возможности использования для этих целей радиоактивных элементов, содержащихся в горных породах и минералах.

Радиологический методоснован на том, что ядра атомов некоторых неустойчивых (радиоактивных) элементов с постоянной, присущей каждому из них скоростью, не зависящей от внешних условий, самопроизвольно распадаются, образуя устойчивые химические элементы. Например, конечными устойчивыми продуктами распада ядер атомов урана (U238, U235), тория (Th232) являются радиогенный газ гелий (Не4) и радиогенный металл свинец (Рb).

Для каждого радиоактивного элемента характерен свой период полураспада, т. е. свой промежуток времени, в течение которого то или иное количество радиоактивного вещества уменьшается наполовину.

Длительность процесса полураспада исчисляется у большинства элементов десятками и сотнями миллионов лет (у тория длительность полураспада равна 1,4∙1010 лет, у урана – 7,0∙108 лет и т.п.).

Учитывая относительное содержание в минерале или горной породе остатка радиоактивного элемента, количество появившихся устойчивых элементов и скорость полураспада радиоактивного элемента, можно вычислить абсолютный возраст минерала.

Радиологический метод исследования дал возможность выразить в годах продолжительность определенных отрезков времени в истории земной коры.

Абсолютная шкала времени привязана к ранее созданной относительной геохронологической шкале.

Относительный возрастпозволяет определять возраст пород относительно друг друга, т.е. устанавливать, какие породы древнее, какие моложе.

Для установления относительного возраста используют два метода, с помощью которых разработана относительная геохронологическая шкала, – стратиграфический и палеонтологический.

Стратиграфический метод основан на изучении положения слоев горных пород в земной коре.

Слои, которые по своему пространственному положению залегают выше рассматриваемых, считаются по времени образования более молодыми, чем подстилающие породы. Стратиграфический методприменяют для толщ с ненарушенным горизонтальным залеганием слоев.

Из рис. 17авидно, что самым молодым является верхний слой 3, самым древним – нижний 1.

Этот метод не используют при залегании слоев в виде складок.

На рис. 17б показан выход на склон рельефа слоев, смятых в складки. Видно, что более древние слои 1 и 2 лежат на более молодом слое 3.

Рис. 17. Залегание слоев горных пород: а) горизонтальное, б) в виде складок

Палеонтологический методоснован на изучении ископаемых остатков вымерших организмов.

Установлено, например, что в разновозрастных слоях осадочных пород встречаются разные комплексы остатков организмов, характеризующие развитие флоры и фауны в ту или иную геологическую эпоху. Сопоставление этих остатков и позволяет судить об относительном возрасте горных пород. Этот метод позволяет определять возраст осадочных пород по отношению друг к другу независимо от характера залегания слоев и сопоставлять возраст пород, залегающих на различных участках.

Изучение окаменелостей, отпечатков (внутренних и наружных), ядер (возникли вследствие заполнения пустот, оставшихся от разложившихся организмов) показало, что встречаемые в ископаемом состоянии формы постепенно сменяются во времени, причем в этой смене наблюдается определенный процесс прогрессивного развития организмов, начиная с самых низших форм и до наиболее организованных групп.

При этом некоторые группы низших животных и растений встречаются с момента зарождения жизни на Земле до настоящего времени, тогда как высшие формы появились и стали преобладать только в новейшее время.

Однако не все организмы позволяют определить более или менее точно относительный возраст породы. Некоторые виды животных и растений жили многие миллионы лет, существенно не изменялись и поэтому встречаются в различных по возрасту слоях горных пород.

Для определения относительного возраста пород используются такие ископаемые формы растений и животных, которые встречаются лишь в слоях, отложившихся в определенный отрезок времени. Они называются руководящими.

Источник

Оцените статью
Разные способы