Способы определения ферментативной активности бактерий

Методы определения ферментативной активности микробов

Обязательным условием идентификации выделенной чистой культуры бактерий является определение ферментативной активности в отношении углеводов и белков (биохимический «паспорт» вида).

Для выявления ферментов, расщепляющих углеводы (сахаролитические ферменты) используют дифференциально-диагностические среды Гисса. В состав сред Гисса входит пептонная вода, индикатор рН, поплавок для улавливания газа и один из углеводов (глюкоза, лактоза, мальтоза, маннит, сахароза, крахмал и т.д.). Если бактерии расщепляют углевод, то образуется кислота и при этом меняется цвет среды за счет находящегося в ней индикатора рН. Большинство патогенных бактерий расщепляют углеводы с образованием только кислоты; некоторые виды ферментируют углеводы с образование кислоты и газа (СО2). При этом меняется цвет среды и в поплавке появляется пузырек газа.

Протеолитическая активность бактерий. Показателями глубокого расщепления белка является образование индола, аммиака, сероводорода. Для выявления этих газообразных веществ делают посевы чистой культуры бактерий на мясо-пептонный бульон или пептонную воду в пробирки со специальными бумажными индикаторами. При наличии продуктов расщепления меняется цвет соответствующего индикатора.

Протеолитическую активность бактерий определяют также путем посева чистой культуры уколом в столбик желатина по наличию и характеру разжижения среды, например, в виде перевернутой елочки, гвоздя, воронки и т.д.

Энергетический метаболизм

Это совокупность биохимических реакций, результатом которых является образование (накопление энергии) и расщепление (расход энергии) макроэргических связей в молекулах АТФ. У бактерий АТФ может синтезироваться в результате процессов брожения и дыхания.

Брожение. Более древний, низкоэффективный способ получения энергии, при котором в результате расщепления молекулы глюкозы образуется 2 молекулы АТФ. Конечными продуктами брожения являются СО2, вода, спирты и органические кислоты. Процесс происходит без участия кислорода.

Дыханием называют процесс окислительного фосфорилирования углеводов с образованием молекул АТФ, СО2 и воды. При распаде одной молекулы глюкозы высвобождаются 12 электронов, которые проходят через цепь дыхательных ферментов, отдавая энергию для синтеза 36 молекул АТФ. Освобождение дыхательной цепи от электронов осуществляют вещества, называемые акцепторами электронов. К таким веществам относится кислород, сульфаты, нитраты, карбонаты. Если конечным акцептором электронов служит мо­лекулярный кислород, дыхание называют аэробным. В случае конечной акцепции электронов другими соединениями дыхание называют анаэробным.

По типу дыхания бактерии классифицируют на че­тыре основные группы:

1. Облигатные (строгие) аэробы растут при свободном доступе кислорода (возбудитель ту­беркулеза).

2. Микроаэрофилы растут при низкой (до 1%) концентрации кислорода и повышенной концентрации углекислого газа (гемофильная палочка).

3. Факультативные анаэробы могут расти как в присутствии кислорода, так и в анаэробных условиях (кишечная палочка).

4. Облигатные (строгие) анаэробы могут расти только при пол­ном отсутствии кислорода в окружающей среде (возбудители столбняка, ботулизма, газовой гангрены).

Источник

Способы определения ферментативной активности бактерий

Все питательные вещества и любые элементы, подвергающиеся взаимодействиям и превращениям с участием бактерий, вступают в реакции при участии ферментов. Ферменты [от лат. fermentum, закваска], или энзимы [от греч. enzyme, дрожжи или закваска], — специфичные и эффективные белковые катализаторы, присутствующие во всех живых клетках. За каждое превращение одного соединения в другое ответственен особый фермент.

Ферменты снижают энергию активации, обеспечивая протекание таких химических реакций, которые без них могли бы проходить только при высокой температуре, избыточном давлении и при других нефизиологических условиях, неприемлемых для живой клетки.

Ферменты увеличивают скорость реакции примерно на 10 порядков, что сокращает полупериод какой-либо реакции с 300 лет до одной секунды.

Ферменты «узнают» субстрат по пространственному расположению его молекулы и распределению зарядов в ней. За связывание с субстратом отвечает определённый участок молекулы ферментативного белка — его каталитический центр. При этом образуется промежуточный фермент-субстратный комплекс, который затем распадается с образованием продукта реакции и свободного фермента.

Регуляторные (аллостерические) ферменты

Регуляторные (аллостерические) ферменты воспринимают различные метаболические сигналы и в соответствии с ними изменяют свою каталитическую активность.

Читайте также:  Эффективный способ лечения насморка у ребенка 4 года

Эффекторные ферменты

Известно шесть основных классов ферментов, катализирующих следующие реакции: оксидоредуктазы — перенос электронов; трансферазы — перенос различных химических групп; гидролазы — перенос функциональных групп на молекулу воды; лиазы — присоединение групп по двойным связям и обратные реакции; изомера-зы — перенос групп внутри молекулы с образованием изомерных форм; лигазы — образование связей С-С, C-S, С-О, C-N за счёт реакций конденсации, сопряжённых с распадом аденозинтрифосфата (АТФ).

• Бактерии способны синтезировать все ферменты, необходимые для утилизации широкого спектра питательных субстратов. Определённый субстрат в среде вызывает синтез ферментов, обеспечивающих его катаболизм. В этом случае говорят об индукции катаболических ферментов индуцирующим субстратом (иидуцибельные ферменты). Образование анаболических ферментов в процессах биосинтеза регулируется путём репрессии конечным продуктом (репрессибельные ферменты). Если в среде имеются одновременно два субстрата, то бактерия использует субстрат, обеспечивающий более быстрый рост. Синтез ферментов для расщепления второго субстрата репрессируется; такой вариант известен как катаболитная репрессия. Ферменты, синтезируемые вне зависимости от условий среды, — конститутивные ферменты.

Определение ферментативной активности бактерий

Определение ферментативной активности бактерий играет огромную роль в их идентификации. Например, все аэробы или факультативные анаэробы обладают супероксид дисмутазой и каталазой — ферментами, защищающими клетку от токсичных продуктов кислородного метаболизма. Практически все облигатные анаэробы не синтезируют эти ферменты. Только одна группа аэробных бактерий — молочнокислые бактерии каталазонегативны, но аккумулируют пероксидазу — фермент, катализирующий окисление органических соединений под действием Н202 (восстанавливается до воды). Наличие аргининдигидролазы — диагностический признак, позволяющий различить сапрофитические виды Pseudomonas от фитопатогенных. Среди пяти основных групп семейства Enterobacteriaceae только две — Escherichiae и Erwiniae— не синтезируют уреазу. Часто вирулентность штамма связана с повышенной активностью ферментов, ответственных за синтез токсинов.

Получение микробных ферментов — важнейшая отрасль промышленной микробиологии. Например, для улучшения пищеварения применяют готовые препараты ферментов — амилазы, целлюлазы, протеазы, липазы, облегчающих соответственно гидролиз крахмала, целлюлозы, белка и липидов. При изготовлении сладостей для предупреждения кристаллизации сахарозы применяют инвертазу дрожжей, для осветления фруктовых соков — пектиназу. Коллагеназа клостридий и стрептокиназа стрептококков, гидролизующие белки, способствуют заживлению ран и ожогов. Литические ферменты бактерий, секретируемые в окружающую среду, действуют на клеточные стенки патогенных микроорганизмов и служат эффективным средством в борьбе с последними, даже если они обладают множественной устойчивостью к антибиотикам. В качестве инструментария в биоорганической химии, генной инженерии и генотерапии используют выделенные из бактерий рибонуклеазы, дезоксирибонуклеазы, полимеразы, ДНК-лигазы и прочие ферменты, направленно модифицирующие нуклеиновые кислоты.

Источник

Изучение ферментативной активности бактерий для идентификации микроорганизмов

Каждый вид микроорганизмов характеризуется специфическим набором ферментов, в связи с этим определение ферментного спектра является важнейшим этапом идентификации микроорганизмов. О наличии ферментов судят по способности микроорганизмов воздействовать на определенный субстрат. Проявление ферментативной активности характеризуется изменением физического состояния субстрата (разжижение желатины), закислением питательной среды (среды Гисса с углеводами, среда Ресселя, среда Олькеницкого), образованием определенных продуктов метаболизма (индол, сероводород, аммиак) и т.д.

В идентификации видовой принадлежности особенно важное значение имеет определение у бактерий гидролаз и оксидоредуктаз. Группу гидролаз по действию на различные вещества практические микробиологи делят на сахаролитические, протеолитические, липолитические ферменты. Определение сахаролитических гидролаз (карбогидраз — ферментов, разлагающих углеводы) проводят с помощью биохимического ряда Гисса. Определение протеаз — ферментов, разлагающих белки, проводят обнаружением газов, являющихся конечным продуктом ферментации белков (индол, сеоводород, аммиак). с помощью специальных индикаторов. Липазы — ферменты разлагающие липиды, чаще всего определяют наличие лецитиназы посевом на желточный агар. Лецитиназа расщепляет лецитин на фосфохолин и диглицерид в этих случаях при росте колоний вокруг них появляются опалесцирующие зоны, отражающие лецитиназную активность.

Среди оксидоредуктаз различают оксидазы, пероксидазы, каталазы, дегидрогеназы. Определение последних имеет важное значение для дифференциации обширных групп родственных микроорганизмов (например, семейства Enterobacteriaceae).

Наиболее распространены следующие методы определения ферментативной активности микроорганизмов.

4. Методы определения гликолитической активности микроорганизмов

Сахаролитическиесвойства, т.е. способность расщеплять сахар и многоатомные спирты с образованием кислоты или кислоты и газа чаще всего изу­чают на дифференциально-диагностических средах Гисса, которые содержат питательный агар, тот или иной углевод и индика­тор Андреде (ВР или др.). В зависимости от изучаемого рода и вида бактерий подбирают среды с соответствующими моно- и дисахаридами (глюкоза, лактоза и др.), полисахаридами (крах­мал, гликоген и др.), высшими спиртами (глицерин, маннит и др.), в про­цессе ферментации которых образуются альдегиды, кислоты и газооб­разные продукты (С02, Н2, СН4).

Читайте также:  Кемпинг лучший способ провести каникулы

В состав короткого “пестрого” ряда Гисса входит 5 углеводов: с глюкоза, лактоза, маннит, мальтоза и сахароза. При некоторых исследова­ниях для более углубленного изучения биохимических свойств выделенного микроба ряд Гисса дополняют дульцитом, сорбитом, ксилозой, арабинозой и некоторыми другими сахарами. Название “пестрый” ряд обусловлено тем, что под дей­ствием ферментов микроорганизмов одни углеводы остаются неизмен­ными и, следовательно, цвет питательной среды не меняет­ся, в то время как другие сахара расщепляются, образуя кислые продукты распада, которые изменяют цвет индикато­ра и соответственно цвет питательной среды. По консистенции среды Гисса бывают жидкими и полужидкими (с добав­лением 0,2—0,5% агар-агара). В пробирки с жидкими сре­дами Гисса для обнаружения газов, являющихся конечными продуктами распада сахаров, опускают “поплавок” — трубоч­ку диаметром 0,5—0,7 см, запаянную с одного конца. “По­плавок” помещают запаянным концом кверху; при стерили­зации он полностью заполняется питательной средой. При образовании в среде газообразных продуктов они вытесняют часть жидкости, находящейся в “поплавке”, вследствие чего у запаянного конца его собирается воздушный пузырек. В полужидких средах Гисса газообразование определяют по наличию мелких пузырьков газа в толще среды и стой­кой пены на ее поверхности. Таким образом, при изучении сахаролитических фермен­тов, выделяемых микробами, учитывают не только явления расщепления тех или иных сахаров по кислотообразованию, но и глубину ферментативного процесса по наличию в пита­тельной среде конечных газообразных продуктов. Пробирки с набором сред Гисса ставят в штатив в один ряд. На каждой пробирке надписывают название сахара, со­держащегося в среде. На первой пробирке каждого ряда, кроме названия сахара, указывают номер или вид исследуе­мой микробной культуры. Культуру берут на кончик петли в очень небольшом количестве и засевают по общепринятой методике.

Критерии учета результатов:

· цвет среды не меняется — культура не ферментирует углевод;

· цвет среды изменяется (в случае использования индикатора Андреде – со светло-желтого на красный, ВР – с розового на синий и т. д.) – культура ферментирует углевод с образованием кислых продуктов (органических кислот), пробирку отмечают буквой «К»;

· цвет среды изменяется и наблюдается появление пузырьков газа в среде или поплавке — культура ферментирует углевод с образованием кислых и газообразных продуктов. Такую пробирку отмечают буквами «КГ».

Кроме того, сахаролитическую активность изучают на средах Эндо, Левина, Плоскирева. Микроорганизмы, сбраживая до кислоты находя­щийся в этой среде молочный сахар, образуют окрашенные колонии (кис­лота изменяет цвет индикатора). Колонии микробов, не ферментирующих лактозу, бесцветны.

Таблица 17. Дифференциально-диагностические среды

Наименование и внешний вид среды Состав (компоненты) Назначение Принцип действия и внешний вид среды после посева
Среда Эндо Бледно-розовая плотная сре­да, разливается в чашки Петри Питательная основа-МПА, субстрат — лактоза, индикатор — основной фуксин, обесцвеченный сульфитом натрия (Na2SO3) Для рассева исследуемого материала (нативного или после обогащения) с целью получения изолированных колоний патогенных и условно-патогенных знтеробактерий: эшерихий, сальмонелл, шигелл, йерсиний и других На среде можно наблюдать рост красных или бесцветных колоний. Эшерихии разлагают лактозу до кислых продук­тов, в том числе альдегидов, они соединятся с сульфитом натрия, при этом освобождается фуксии, который окраши­вает колонии и среду в красный цвет, часто с метал­лическим зеленоватым блеском (положительный результат). Сальмонеллы и шигеллы не разлагают лактозу и образуют бесцветные колонии (отрицательный результат).
Среда Левина Плотная среда красновато-фиолетового цвета. Среда является дифференциально-диагностической и слабо се­лективной, так как оказыва­ет ингибирующее действие на грамположительную микрофлору Питательная основа-МПА, Субстрат — лактоза. Индикаторы — эозин и метиленовый синий Для получения изолированных колоний патогенных и условно-патогенных энтеробактерий — см. среду Эндо. Среда Левина может быть использована также для выделения грибов Candida albicans На среде можно наблюдать рост синих или бесцветных колоний. Escherichia coli, разлагающая лактозу, вызывает сдвиг рН в кислую сторону, при этом комплекс индикаторов эозина и метиленового синего выпадает в осадок и колонии приобретают темно-сине-фиолетовый, почти черный цвет, часто с металлическим блеском (положительный результат). Энтеробактерии не расщепляющие лактозу, образуют бесцветные колонии.
Среды Гисса Набор пробирок с полужидкой средой розового цвета. Питательная основа — полужидкий МПА (0,4%), Субстрат (в каждой пробирке разный углевод), Индикатор — бром крезоловый пурпурный или BP (водный голубой и розоловая кислота) Определение спектра сахаролитической активности с целью идентификации (определение родовой и видовой принадлежности) выделенной культуры бактерий семейства Enterobacteriaceae, а также других семейств и родов. При ферментации субстрата образуются кислые продукты (молочная, уксусная, муравьиная и другие кислоты), кото­рые снижают значение рН и розовый цвет индикатора изменяется на синий, что указы­вает на положительную реакцию. При образовании газа (Н2 и СО2) — пузырьки и трещины в толще среды. Рост бактерий в среде Гисса без изменения ее цвета свидетельствует об отсутствии фермента, расщепляющего данный углевод, то есть об отрицательной реакции
Читайте также:  Каким способом происходит репликация днк

5. Методы определения протеолитической активности бактерий

Протеолитическая активность микробов направлена на расщепление белков до промежуточных (пептоны, полипептиды, аминокислоты) или конечных (сероводород, индол, аммиак) продуктов. Действие протеолитических ферментов изучают на средах с желатином, молоком, сывороткой, пептоном.

Тест на желатиназу. Культуру микроорганизмов засевают уколом в столбик питательного бульона, содержащего 12% желатины. Посевы выдерживают при комнатной температуре (20-22°С) в течение нескольких (5-7) дней, при этом регистрируют не только наличие разжижения, но и его характер. Разжижение может быть послойным, что свойственно бактериям сине-зеленого гноя; холерный вибрион разжижает желатину в виде гвоздя; стафилококки – в виде чулка. Рост сибиреязвенных бацилл напоминает елочку, перевернутую вершиной вниз (характер разжижения послойный).

Тест на растворение свертка казеина. Культуру засевают на обезжиренное молоко. Культура расщепляет молочный сахар (лактозу) и за счет закисления среды наблюдается свертывание молочного белка (казеина). При выделении протеолитических ферментов казеин постепенно растворяется – пептонизируется, в результате чего молоко просветляется и приобретает легкий кремовый оттенок, а на дне пробирки формируется осадок.

Тест на свернутой кровяной сыворотке. Куль­туру исследуемых аэробных микробов засевают на чашки, анаэробных — уколом в столбик свернутой лошадиной сыво­ротки, инкубируют в термостате при 37 °С. Штам­мы, продуцирующие протеолитические ферменты, разжижая питательную среду, образуют углубления вокруг колоний или на поверхности столбика среды.

Некоторые виды патогенных микробов с выраженной про­теолитической активностью обладают способностью расщеп­лять белок и пептон до продуктов глубокого распада: индо­ла, сероводорода, мочевины и аммиака. При определении видов и дифференциации разновидно­стей патогенных микробов наибольшее значение имеет выяв­ление двух первых продуктов: индола и сероводорода.

Определение индола. Для обнаружения индола по спо­собу Мореля узкие полоски фильтровальной бумаги смачивают горячим насыщенным раствором щавелевой кислоты и высушивают. Индикатор­ную бумажку помещают между стенкой пробирки с МПА и пробкой, предварительно произведя посев исследуемой культуры. При выделении индола на 2-3-й день нижняя часть полоски бумаги приобре­тает розовый цвет. Индол образуется при наличии у бактерий фермента триптофаназы при расщеплении сложной гетероциклической кислоты — триптофана.

Определение сероводорода. Сероводород яв­ляется конечным продуктом расщепления аминокислот: цистина, цистеина и метионина, содержащих серу. Петлю ис­следуемой культуры микробов засевают в пробирку с мясопептонным бульоном. Сероводород обнаруживают с помощью полоски фильтровальной бу­маги, пропитанной раствором ацетата свинца, которую закрепляют меж­ду стенкой засеянной пробирки и пробкой. При взаимодействии серово­дорода и ацетата свинца бумага чернеет в результате образования суль­фида свинца.

Тест на аммиак.Аммиак определяют при помощи увлажненной розовой лакмусовой бумажки, помещенной между стенкой и пробкой засеянной пробирки. Посевы инкубируют в термостате 1-5 суток. Посинение лакмусовой бумажки свидетельствует о выделении аммиака.

Источник

Оцените статью
Разные способы