Способы описания модели данных

Модели баз данных — шпаргалка для начинающих

Основные виды баз данных и их модели

СУБД используют различные модели баз данных . Самые старые системы можно разделить на иерархические и сетевые базы данных — это пререляционные модели.

Модели баз данных — иерархическая база данных

Иерархическая модель базы данных подразумевает, что элементы организованы в структуры, связанные между собой иерархическими или древовидными связями. Родительский элемент может иметь несколько дочерних элементов. Но у дочернего элемента может быть только один предок.

« Система управления информацией » ( Information Management System ) компании IMB — пример иерархической СУБД.

Иерархическая модель данных организует их в форме дерева с иерархией родительских и дочерних сегментов. Такая модель подразумевает возможность существования одинаковых ( преимущественно дочерних ) элементов. Данные здесь хранятся в серии записей с прикреплёнными к ним полями значений. Модель собирает вместе все экземпляры определённой записи в виде « типов записей » — они эквивалентны таблицам в реляционной модели, а отдельные записи — столбцам таблицы. Для создания связей между типами записей иерархическая модель использует отношения типа « родитель-потомок » вида 1:N . Это достигается путём использования древовидной структуры — она « позаимствована » из математики, как и теория множеств, используемая в реляционной модели.

Иерархическая база данных — пример

Будем считать, что в рамках данной статьи примером иерархической базы данных является организация, хранящая информацию о своём работнике: имя, номер сотрудника, отдел и зарплату. Организация также может хранить информацию о его детях, их имена и даты рождения.

Данные о сотруднике и его детях формируют иерархическую структуру, где информация о сотруднике – это родительский элемент, а информация о детях — дочерний элемент. Если у сотрудника три ребёнка, то с родительским элементом будут связаны три дочерних. Иерархическая база данных подразумевает, что отношение « родитель-потомок » — это отношение « один ко многим ». То есть у дочернего элемента не может быть больше одного предка.

Иерархические БД были популярны, начиная с конца 1960-х годов, когда компания IBM представила свою СУБД «Система управления информацией. Иерархическая схема состоит из типов записей и типов « родитель-потомок »:

  • Запись — это набор значений полей.
  • Записи одного типа группируются в типы записей.
  • Отношения «родитель-потомок» — это отношения вида 1:N между двумя типами записей.
  • Иерархическая база данных данных состоит из нескольких иерархических схем.

Сетевая модель базы данных

Сетевая модель базы данных подразумевает, что у родительского элемента может быть несколько потомков, а у дочернего элемента — несколько предков. Записи в такой модели связаны списками с указателями. IDMS (« Интегрированная система управления данными ») от компании Computer Associates international Inc. — пример сетевой СУБД.

Иерархическая модель данных структурирует данные в виде древа записей, где есть один родительский элемент и несколько дочерних. Сетевая модель позволяет иметь несколько предков и потомков, формирующих решётчатую структуру.

Сетевая модель позволяет более естественно моделировать отношения между элементами. И хотя эта модель широко применялась на практике, она так и не стала доминантной по двум основным причинам. Во-первых, компания IBM решила не отказываться от иерархической модели в расширениях для своих продуктов, таких как IMS и DL/I . Во-вторых, через некоторое время её сменила реляционная модель, предлагавшая более высокоуровневый, декларативный интерфейс.

Популярность сетевой модели совпала с популярностью иерархической модели. Некоторые данные намного естественнее моделировать с несколькими предками для одного дочернего элемента. Сетевая модель как раз и позволяла моделировать отношения «многие ко многим». Её стандарты были формально определены в 1971 году на конференции по языкам систем обработки данных ( CODASYL ).

Основной элемент сетевой модели данных — набор, который состоит из типа « запись-владелец », имени набора и типа « запись-член ». Запись подчинённого уровня (« запись-член ») может выполнять свою роль в нескольких наборах. Соответственно, поддерживается концепция нескольких родительских элементов.

Запись старшего уровня (« запись-владелец ») также может быть « членом » или « владельцем » в других наборах. Модель данных — это простая сеть, связи, типы пересечения записей ( в IDMS они называются junction records , то есть «перекрёстные записи ). А также наборы, которые могут их объединять. Таким образом, полная сеть представлена несколькими парными наборами.

В каждом из них один тип записи является « владельцем » ( от него отходит «стрелка» связи ), и один или более типов записи являются « членами » ( на них указывает «стрелка» ). Обычно в наборе существует отношение 1:М , но разрешено и отношение 1:1 . Сетевая модель данных CODASYL основана на математической теории множеств.

Известные сетевые базы данных:

Реляционная модель базы данных

В реляционной модели, в отличие от иерархической или сетевой, не существует физических отношений. Вся информация хранится в виде таблиц ( отношений ) , состоящих из рядов и столбцов. А данные двух таблиц связаны общими столбцами, а не физическими ссылками или указателями. Для манипуляций с рядами данных существуют специальные операторы.

Читайте также:  10 способов понять что он тебя обманывает

В отличие от двух других типов СУБД, в реляционных моделях данных нет необходимости просматривать все указатели, что облегчает выполнение запросов на выборку информации по сравнению с сетевыми и иерархическими СУБД. Это одна из основных причин, почему реляционная модель оказалась более удобна. Распространённые реляционные СУБД: Oracle , Sybase , DB2 , Ingres , Informix и MS-SQL Server .

« В реляционной модели, как объекты, так и их отношения представлены только таблицами, и ничем более ».

РСУБД — реляционная система управления базами данных, основанная на реляционной модели Э. Ф. Кодда. Она позволяет определять структурные аспекты данных, обработки отношений и их целостности. В такой базе информационное наполнение и отношения внутри него представлены в виде таблиц — наборов записей с общими полями.

Реляционные таблицы обладают следующими свойствами:

  • Все значения атомарны.
  • Каждый ряд уникален.
  • Порядок столбцов не важен.
  • Порядок рядов не важен.
  • У каждого столбца есть своё уникальное имя.

Некоторые поля могут быть определены как ключевые. Это значит, что для ускорения поиска конкретных значений будет использоваться индексация. Когда поля двух различных таблиц получают данные из одного набора, можно использовать оператор JOIN для выбора связанных записей двух таблиц, сопоставив значения полей.

Часто у полей будет одно и то же имя в обеих таблицах. Например, таблица « Заказы » может содержать пары « ID-покупателя » и « код-товара ». А в таблице « Товар » могут быть пары « код-товара » и « цена ». Поэтому чтобы рассчитать чек для определённого покупателя, необходимо суммировать цену всех купленных им товаров, использовав JOIN в полях « код-товара » этих двух таблиц. Такие действия можно расширить до объединения нескольких полей в нескольких таблицах.

Поскольку отношения здесь определяются только временем поиска, реляционные базы данных классифицируются как динамические системы.

Сравниваем три модели баз данных

Первая, иерархическая модель данных, имеет древовидную структуру (« родитель-потомок »), и поддерживает только отношения типа « один к одному » или « один ко многим ». Эта модель позволяет быстро получать данные, но не отличается гибкостью. Иногда роль элемента ( родителя или потомка ) неясна и не подходит для иерархической модели.

Вторая, сетевая модель данных , имеет более гибкую структуру, чем иерархическая модель данных, и поддерживает отношения « многие ко многим ». Но быстро становится слишком сложной и неудобной для управления.

Третья модель — реляционная — более гибкая, чем иерархическая и проще для управления, чем сетевая. Реляционная модель сегодня используется чаще всего.

Объект в реляционной модели баз данных определяется как позиция информации, хранимой в базе данных. Объект может быть осязаемым или неосязаемым. Примером осязаемого объекта может быть сотрудник организации, а примером неосязаемой сущности — учётная запись покупателя. Объекты определяются атрибутами — информационным отображением свойств объекта. Эти атрибуты также известны как столбцы, а группа столбцов — как ряд. Ряд также можно определить как экземпляр объекта.

Объекты связываются отношениями, основные типы которых можно определить следующим образом:

«Один к одному»

В этом виде отношений один объект связан с другим. Например, Менеджер -> Отдел .

У каждого менеджера может быть только один отдел, и наоборот.

«Один ко многим»

В моделях данных отношение одного объекта с несколькими. Например, Сотрудник -> Отдел .

Каждый сотрудник может быть только в одном отделе, но в самом отделе может быть больше одного сотрудника.

«Многие ко многим»

В заданный момент времени объект может быть связан с любым другим. Например, Сотрудник -> Проект .

Сотрудник может участвовать в нескольких проектах, и каждый проект может объединять несколько сотрудников.

В реляционной модели объекты и их отношения представлены двухмерным массивом или таблицей.

Каждая таблица представляет объект.

Каждая таблица состоит из рядов и столбцов.

Отношения между объектами представлены столбцами.

Каждый столбец представляет атрибут объекта.

Значения столбцов выбираются из области или набора всех возможных значений.

Столбцы, которые используются для связи объектов, называются ключевыми. Есть два типа ключей — первичные и внешние.

Первичные служат для однозначного определения объекта. Внешний ключ — это первичный ключ одного объекта, существующий как атрибут в другой таблице.

Преимущества реляционной модели данных:

  1. Простота использования.
  2. Гибкость.
  3. Независимость данных.
  4. Безопасность.
  5. Простота практического применения.
  6. Слияние данных.
  7. Целостность данных.
  1. Избыточность данных.
  2. Низкая производительность.

Другие модели баз данных (ООСУБД)

В последнее время на рынке СУБД появились продукты, представленные объектными и объектно-ориентированной моделью данных, такие как Gem Stone и Versant ОСУБД. Также производятся исследования в области многомерных и логических моделей данных.

Особенности объектно-ориентированных систем управления базами данных (ООСУБД):

  • При интеграции возможностей базы данных с объектно-ориентированным языком программирования получается объектно-ориентированная СУБД.
  • ООСУБД представляет данные как объекты одного или нескольких языков программирования.
  • Такая система должна отвечать двум критериям: являться СУБД и должна быть объектно-ориентированной. То есть должна насколько это возможно соответствовать современным объектно-ориентированным языкам программирования. Первый критерий подразумевает: длительное хранение данных, управление вторичным хранилищем, параллельный доступ к данным, возможность восстановления, а также поддержку нерегламентированных запросов. Второй критерий подразумевает: сложные объекты, идентичность объектов, инкапсуляцию, типы или классы, механизм наследования, переопределение в сочетании с динамическим связыванием, расширяемость и вычислительную полноту.
  • ООСУБД дают возможность моделирования данных в виде объектов.

А также поддержку классов объектов и наследование свойств и методов классов подклассами и их объектами.

На данный момент не существует общепринятого стандарта ООСУБД. Считается, что подобные модели данных находится на ранней стадии развития.

  • В конструкторских и рассредоточенных базах данных, телекоммуникации, а также в таких научных областях, как физика высоких энергий и молекулярная биология.
  • Используются в специализированных областях финансового сектора.
  • Во встроенных системах, пакетном программном обеспечении и системах реального времени, чтобы у пользователей была возможность создавать объекты по своему выбору.
Читайте также:  Мобильный кондиционер способы установки

Пожалуйста, оставляйте ваши отзывы по текущей теме статьи. За комментарии, отклики, дизлайки, лайки, подписки низкий вам поклон!

Пожалуйста, оставьте ваши комментарии по текущей теме материала. Мы очень благодарим вас за ваши комментарии, лайки, отклики, подписки, дизлайки!

Источник

Моделирование данных: зачем нужно и как реализовать

Моделирование данных ощутимо упрощает взаимодействие между разработчиками, аналитиками и маркетологами, как и сам процесс создания отчетов. Поэтому я перевела статью IBM Cloud Education о ценности моделирования и от себя добавила инфо о способах трансформации данных для моделирования.

Моделирование данных

Узнайте, как моделирование данных использует абстракцию для представления и лучшего понимания природы данных в информационной системе предприятия.

Что такое моделирование данных

Моделирование данных — это создание визуального представления о всей информационной системе либо ее части. Цель в том, чтобы проиллюстрировать типы данных, которые используются и хранятся в системе, отношения между этими типами данных, способы группировки и организации данных, их форматы и атрибуты.

Модели данных строятся на основе бизнес-потребностей. Правила и требования к модели данных определяются заранее на основе обратной связи с бизнесом, поэтому их можно включить в разработку новой системы или адаптировать к существующей.

Данные можно моделировать на различных уровнях абстракции. Процесс начинается со сбора бизнес-требований от заинтересованных сторон и конечных пользователей. Эти бизнес-правила затем преобразуются в структуры данных. Модель данных можно сравнить с дорожной картой, планом архитектора или любой формальной схемой, которая способствует более глубокому пониманию того, что разрабатывается.

Моделирование данных использует стандартизированные схемы и формальные методы. Это обеспечивает последовательный и предсказуемый способ управления данными в организации или за ее пределами.

В идеале модели данных — это живые документы, которые развиваются вместе с потребностями бизнеса. Они играют важную роль в поддержке бизнес-процессов и планировании ИТ-архитектуры и стратегии. Моделями данных можно делиться с поставщиками, партнерами и коллегами.

Преимущества моделирования данных

Моделирование упрощает просмотр и понимание взаимосвязей между данными для разработчиков, архитекторов данных, бизнес-аналитиков и других заинтересованных лиц. Кроме того, моделирование данных помогает:

Уменьшить количество ошибок при разработке программного обеспечения и баз данных.

Унифицировать документацию на предприятии.

Повысить производительность приложений и баз данных.

Упростить отображение данных по всей организации.

Улучшить взаимодействие между разработчиками и командами бизнес-аналитики.

Упростить и ускорить процесс проектирования базы данных на концептуальном, логическом и физическом уровнях.

Типы моделей данных

Разработка баз данных и информационных систем начинается с высокого уровня абстракции и с каждым шагом становится все точнее и конкретнее. В зависимости от степени абстракции модели данных можно разделить на три категории. Процесс начинается с концептуальной модели, переходит к логической модели и завершается физической моделью.

Концептуальные модели данных. Также они называются моделями предметной области и описывают общую картину: что будет содержать система, как она будет организована и какие бизнес-правила будут задействованы. Концептуальные модели обычно создаются в процессе сбора исходных требований к проекту. Как правило, они включают классы сущностей (вещи, которые бизнесу важно представить в модели данных), их характеристики и ограничения, отношения между сущностями, требования к безопасности и целостности данных. Любые обозначения обычно просты.

    Логические модели данных уже не так абстрактны и предоставляют более подробную информацию о концепциях и взаимосвязях в рассматриваемой области. Они содержат атрибуты данных и показывают отношения между сущностями. Логические модели данных не определяют никаких технических требований к системе. Этот этап часто пропускается в agile или DevOps-практиках. Логические модели данных могут быть полезны для проектов, ориентированных на данные по своей природе. Например, для проектирования хранилища данных или разработки системы отчетности.

    Физические модели данных представляют схему того, как данные будут храниться в базе. По сути, это наименее абстрактные из всех моделей. Они предлагают окончательный дизайн, который может быть реализован как реляционная база данных, включающая ассоциативные таблицы, которые иллюстрируют отношения между сущностями, а также первичные и внешние ключи для связи данных.

Процесс моделирования данных

Моделирование данных начинается с договоренности о том, какие символы используются для представления данных, как размещаются модели и как передаются бизнес-требования. Это формализованный рабочий процесс, включающий ряд задач, которые должны выполняться итеративно. Сам процесс обычно выглядят так:

Определите сущности. На этом этапе идентифицируем объекты, события или концепции, представленные в наборе данных, который необходимо смоделировать. Каждая сущность должна быть целостной и логически отделенной от всех остальных.

Определите ключевые свойства каждой сущности. Каждый тип сущности можно отличить от всех остальных, поскольку он имеет одно или несколько уникальных свойств, называемых атрибутами. Например, сущность «клиент» может обладать такими атрибутами, как имя, фамилия, номер телефона и т.д. Сущность «адрес» может включать название и номер улицы, город, страну и почтовый индекс.

Определите связи между сущностями. Самый ранний черновик модели данных будет определять характер отношений, которые каждая сущность имеет с другими. В приведенном выше примере каждый клиент «живет по» адресу. Если бы эта модель была расширена за счет включения сущности «заказы», ​​каждый заказ также был бы отправлен на адрес. Эти отношения обычно документируются с помощью унифицированного языка моделирования (UML).

Полностью сопоставьте атрибуты с сущностями. Это гарантирует, что модель отражает то, как бизнес будет использовать данные. Широко используются несколько формальных шаблонов (паттернов) моделирования данных. Объектно-ориентированные разработчики часто применяют шаблоны для анализа или шаблоны проектирования, в то время как заинтересованные стороны из других областей бизнеса могут обратиться к другим паттернам.

Назначьте ключи по мере необходимости и определите степень нормализации. Нормализация — это метод организации моделей данных, в которых числовые идентификаторы (ключи) назначаются группам данных для установления связей между ними без повторения данных. Например, если каждому клиенту назначен ключ, этот ключ можно связать как с его адресом, так и с историей заказов, без необходимости повторять эту информацию в таблице с именами клиентов. Нормализация помогает уменьшить объем дискового пространства, необходимого для базы данных, но может сказываться на производительности запросов.

Завершите и проверьте модель данных. Моделирование данных — это итеративный процесс, который следует повторять и совершенствовать под потребности бизнеса.

Типы моделирования данных

Моделирование данных развивалось вместе с системами управления базами данных (СУБД), при этом типы моделей усложнялись по мере роста потребностей предприятий в хранении данных.

Иерархические модели данных представляют отношения «один ко многим» в древовидном формате. В модели этого типа каждая запись имеет единственный корень или родительский элемент, который сопоставляется с одной или несколькими дочерними таблицами. Эта модель была реализована в IBM Information Management System (IMS) ​​в 1966 году и быстро нашла широкое применение, особенно в банковской сфере. Хотя этот подход менее эффективен, чем недавно разработанные модели баз данных, он все еще используется в системах расширяемого языка разметки (XML) и географических информационных системах (ГИС).

Реляционные модели данных были предложены исследователем IBM Э. Ф. Коддом в 1970 году. Они до сих пор встречаются во многих реляционных базах данных, обычно используемых в корпоративных вычислениях. Реляционное моделирование не требует детального понимания физических свойств используемого хранилища данных. В нем сегменты данных объединяются с помощью таблиц, что упрощает базу данных.

Реляционные базы данных часто используют язык структурированных запросов (SQL) для управления данными. Эти базы подходят для поддержания целостности данных и минимизации избыточности. Они часто используются в кассовых системах, а также для других типов обработки транзакций.

В ER-моделях данных используют диаграммы для представления взаимосвязей между сущностями в базе данных. ER-модель представляет собой формальную конструкцию, которая не предписывает никаких графических средств её визуализации. В качестве стандартной графической нотации, с помощью которой можно визуализировать ER-модель, была предложена диаграмма «сущность-связь» (Entity-Relationship diagram). Однако для визуализации ER-моделей могут использоваться и другие графические нотации, либо визуализация может вообще не применяться (например, только текстовое описание).

Объектно-ориентированные модели данных получили распространение как объектно-ориентированное программирование и стали популярными в середине 1990-х годов. Вовлеченные «объекты» — это абстракции сущностей реального мира. Объекты сгруппированы в иерархии классов и имеют связанные черты. Объектно-ориентированные базы данных могут включать таблицы, но могут также поддерживать более сложные связи. Этот подход часто используется в мультимедийных и гипертекстовых базах данных.

Размерные модели данных разработал Ральф Кимбалл для быстрого поиска данных в хранилище. Реляционные и ER-модели делают упор на эффективное хранение и уменьшают избыточность данных, а размерные модели упорядочивает данные таким образом, чтобы легче было извлекать информацию и создавать отчеты. Это моделирование обычно используется в системах OLAP.

Две популярные размерные модели данных — это схемы «звезда» и «снежинка». В схеме «звезда» данные организованы в факты (измеримые элементы) и измерения (справочная информация), где каждый факт окружен связанными с ним измерениями в виде звездочки. Схема «снежинка» напоминает схему «звезда», но включает дополнительные слои связанных измерений, что усложняет схему ветвления.

Инструменты для моделирования данных

Сегодня широко используются многочисленные коммерческие и CASE-решения с открытым исходным кодом, в том числе различные инструменты моделирования данных, построения диаграмм и визуализации. Вот несколько примеров:

erwin Data Modeler — это инструмент моделирования данных, основанный на языке IDEF1X, который теперь поддерживает и другие нотации, включая нотацию для размерного моделирования.

Enterprise Architect — это инструмент визуального моделирования и проектирования, который поддерживает моделирование корпоративных информационных систем и архитектур, программных приложений и баз данных. Он основан на объектно-ориентированных языках и стандартах.

ER/Studio — это программа для проектирования баз данных, совместимая с некоторыми из самых популярных СУБД. Она поддерживает как реляционное, так и размерное моделирование данных.

Бесплатные инструменты моделирования данных включают решения с открытым исходным кодом, такие как Open ModelSphere.

Для того, чтобы преобразовать данные в структуру, которая соответствует требованиям модели, можно использовать встроенный механизм регулярных запросов, которые выполняются в Google BigQuery, Scheduled Queries и AppScript. Их легко можно освоить, потому что это привычный SQL, но проводить отладку в Scheduled Queries практически нереально. Особенно, если это какой-то сложный запрос или каскад запросов.

Есть специализированные инструменты для управления SQL-запросами, например, dbt и Dataform.

dbt (data build tool) — это фреймворк с открытым исходным кодом для выполнения, тестирования и документирования SQL-запросов, который позволяет привнести элемент программной инженерии в процесс анализа данных. Он помогает оптимизировать работу с SQL-запросами: использовать макросы и шаблоны JINJA, чтобы не повторять в сотый раз одни и те же фрагменты кода.

Главная проблема, которую решают специализированные инструменты — это уменьшение времени, необходимого на поддержку и обновление. Это достигается за счет удобства отладки.

Источник

Читайте также:  Самые распространенные способы получения металлов
Оцените статью
Разные способы