Способы описания механического движения естественный векторный координатный

Способы описания механического движения.

Способы описания механического движения.

по средством указания вектора Aв каждый момент времени –

векторный способ,естественный –по параметрам движения например пройденному частицей.

Координатный – посредством указаний проекций в декартовой системе координат.

Векторный способ описания движения заключается в нахождении величины и направления радиус-вектора rв любой

момент времени, т. е. установлении вида зависимости:

r(t) = r(t)·er(t),

где r(t) — модуль (величина) радиус-вектора;

er(t) — единичный век тор, задающий направление вектора r.

er = r/r = ,

Эквивалентность различных способов описания движения.

Путь и траектория. Понятие средней и мгновенной скорости и ускорения. Скорость прохождения пути. Поиск графика движения по его характеристикам.

Вектором средней скорости называется величина, равная отношению приращения радиус-вектора к промежутку времени, в течение которого оно произошло.

Vср = ∆r/∆t. Вектор средней скорости сонаправлен вектору перемещения,

но их величины не равны друг другу и, кроме того, измеряются в разных единицах. Для описания движения в конкретный момент времени

используется понятие мгновенной скорости, V=lim ∆r/∆t=dr/dt. Мгновенная скорость показывает, как быстро изменяется радиус-вектор материальной точки при бесконечно малом приращении времени Dt для выбранного момента t. Траектория – воображаемая непрерывная линия по которой перемещается мат. точка в пространстве. Вектором среднего ускорения называется физическая

величина, равная отношению приращения вектора скорости к промежутку времени, в течение которого оно произошло.

aср = ∆V /∆t. Мгновенное ускорение равно пределу, к которому стремится

среднее ускорение при ∆t, стремящемуся к нулю, или производной от вектора скорости по времени:

a=lim ∆v/∆t=dv/dt.

Скорость прохождения пути.

∆S=∫│V(t)│dt; Vs ср = ∆s/∆t;

|Vср.|(t)= 1/(t-tₒ)∫│V(t)│dt; Vsср=|V|ср.

4. Преобразования Галилея. Инвариантность пространственных и временных интервалов в классической физике. Законы преобразований скоростей и ускорений.

Преобразования Галилея.Выявим связь между пространственными координатами в неподвижной относительно наблюдателя — лабораторной СО (ЛСО) S и СО S’, движущейся

относительно нее равномерно прямолинейно. Пусть СО S’

смещается в положительном направлении вдоль оси OX с постоянной скоростьюV, для

любого момента времени можно записать выражение, связывающее радиус-вектор r‘ частицы A в подвижной и ЛСО:

rA’ = rA — r‘0 = rA – V*t.

Здесь мы учли абсолютный характер времени и предварительно проведенную операцию синхронизации часов в начальный

момент времени, когда начала обеих систем координат совпадали (т. е. tₒ = tₒ’ = 0). Спроецировав это уравнение на оси координат и учтя абсолютность времени и предварительно проведенную в этих системах от счета процедуру синхронизации часов, получим прямые и обратные преобразования Галилея:

x’ = x – V*t; y’ = y; z’ = z; t’ = t;

x = x’ + V*t’; y’ = y; z’ = z; t’ = t.

Согласно преобразованиям Галилея: одновременность — инвариант преобразований. События, одновременные в одной СО, одновременны в любой другой системе отсчета, движущейся относительно

нее равномерно прямолинейно;

временной и пространственный интервалы — инварианты преобразований Галилея.

Инвариантные величины в классической механике.

Докажем утверждение об инвариантности пространственного

интервала применительно к классической механике (т. е. его

инвариантность к преобразованиям Галилея).Пусть СО S’ движется относительно системы S с переменной скоростью V(t), много меньшей скорости света. Используя принцип независимости перемещений, можно записать, что радиус-векторы произвольных точек A и B в этих СО в приближении классической механики связаны между собой следующими соотношениями: rA=r’A+∫V(t)dt; rB=r’B+∫V(t)dt;

Читайте также:  По какому признаку определяются электронные документы по способу изготовления

Из этих соотношений следует, что пространственный ин тер вал ∆r = |∆r| не зависит от вы бора СО:|∆r‘|=|r‘B- r‘A|=|rB- rA| = |∆r|. Пространственный интервал в классической механике есть абсолютная величина по отношению к выбору СО.Из однородности времени, однородности и изотропности пространства, а так же преобразований Галилея вытекают обобщения повседневного опыта и удается выявить характеристики пространственно-временных отношений, не зависящие от выбора СО, в том числе движущихся. Ими являются временные и пространственные интервалы. Временной и пространственный интервалы инвариантны по

отношению к преобразованиям Галилея.

Закон преобразования скоростей. Скорость частицы при переходе от описания движения в одной СО к описанию движения в другой изменяется в соответствии со следующим

уравнением, называемым законом преобразования скоростей:

v=v’ + V, где v — абсолютная скорость (скорость частицы относительно ЛСО); v’ относительная скорость (скорость частицы относительно движущейся СО системы S’);

Vпереносная скорость (скорость движения системы S’ относительно ЛСО).

Движение материальной точки по окружности и её кинематические характеристики: вектор элементарного углового перемещения, угловая скорость и ускорение. Связь линейных и угловых кинематических характеристик.

Движение частицы по окружности как движение с одной степенью свободы.При движении частицы поокружности меняется только направление ее радиус-вектора r(t). Уравнение, характеризующее изменение положения материальной точки со временем, имеет вид:r(t) = r·e(t), где r = const; er — единичный вектор, направленный вдоль r. Пусть радиус-вектор частицы описывает конус. Тогда его сечение плоскостью XO’Y, перпендикулярной оси OZ — оси

симметрии этого конуса, образует окружность радиуса r

В декартовой СК зависимости координат частицы от

времени имеют следующий вид: x(t)=p·cosφ(t); y(t)=p·sinφ(t),

а траектория частицы задается уравнением: x*x+y*y=p*p

Понятие вектора элементарного углов го перемещения.Рассмотрим движение частицы в плоскости XY в полярных координатах. В данном случае поскольку частица обладает одной степенью свободы, ее движение удобно характеризовать зависимостью угловой координаты (угла) от времени φ(t)и может быть описано следующим образом:

r=const. φ=φ(t) . По аналогии с понятием вектора элементарного перемещения drвведем понятие вектора элементарного углового перемещения dφ . За величину вектора dφ примем значение угла, на который повернется частица вокруг оси OZ за время dt, выраженное в радианах. Направление вектора dφ зададим таким образом, чтобы оно совпадало с осью вращения и определялось в соответствии с правилом буравчика или правого винта. следует, что вектора линейного и углов го перемещений связаны соотношением dr=[dφ*r] и не

зависят от выбора положения тела от счета (точки O) на оси

вращения. Модуль вектора drравен dr=dφ·r·sinθ=dφ·p и не зависит от выбора точки О на оси OZ Направление вектора drзадается следующим образом. Вектора dφ и rизображают исходящими из одной точки. Затем головку правого винта поворачивают от dφ к r. Направление вектора dr) будет совпадать с направлением поступательного движения правого винта. Чтобы быть вектором, величина должна удовлетворять закону сложения векторов. Последовательность перемещений на элементарные углы подчиняется этому закону и величина dφ с этой точки зрения может быть вектором. Перемещения же на конечные углы ∆φ этому правилу не удовлетворяют. Кроме этого, при повороте на конечный угол ∆φ модуль вектора перемещения равен: |∆r|=2r*sinθ*sin∆φ/2 и, следовательно, соотношение dr=[dφ*r] в этом случае не выполняется. Для малых углов поворота оно соблюдается приближенно и тем точнее, чем величина 2· sin(∆φ/2) ближе к ∆φ.

Читайте также:  Способ выделки шкуры барана

Вектор угловой скорости – физическая величина, равная производной от вектора углового перемещения по времени:

Вектор углового ускорения – физическая величина, равная производной от угловой скорости по времени:

Связь: a=sqrt(a(тао в квадрате)+a(n-ое в квардате))

A(тао)= [ε,r]. a(n-ое) =[ω[ω.r]]

Описание движения несвободных частиц в ИСО. Понятие силы и массы. Второй закон Ньютона. Процедура измерения массы, свойства массы. Понятие импульса материальной точки. Второй закон Ньютона в Импульсивной форме.

Частица, которая не изменяет в результате взаимодействия с другими телами свои свойства (например массу), но изменяет характеристики своего состояния (радиус-вектор и скорость) называется несвободной. изменение характеристик состояния несвободнойчастицы происходит под влиянием внешнего воздействия.Сила— физическая величина, являющаяся мерой воздействия одного тела или поля на другое тело. Масса – физическая величина – отражающая способность частицы сопротивляться внешнему воздействию. Масса является мерой инертности тела по отношению к внешнему воздействию. В этой связи ее называют инертной массой. Свойства массы: аддитивность — M=m1+m2. масса величина скалярная, значение которой постоянно в медленно движущихся ИСО, Второй закон Ньютона – Ускорение зависит от силы прямо пропорционально а от массы обратно пропорционально. Второй закон Ньютона можно применять в любых ИСО, движущихся со скоростями, много меньшими скорости света. Импульс – произведение массы частицы на вектор её скорости. P=mv.Закон движения в импульсивной форме:

F=ma=m*dv/dt=dvm/dt=dP/dt

10.Действие и противодействие. Третий закон Ньютона. Область применимости третьего закона Ньютона. В природе нет односторонних действий, есть исключительно взаимодействия. Третий закон рассматривает взаимодействие тел. Этот закон утверждает, что независимо от природы взаимодействия любая пара тел действует друг на друга с силами, равными по величине и направленными в противоположные стороны вдоль прямой, соединяющей эти тела.

11. Понятие неинерциальной СО. Силы инерции и их свойства. Причины возникновения сил инерции.

Сила инерции сила, сообщающая телу дополнительное ускорение, которое не вызвано взаимодействием с

другими телами или полями и обусловлено ускоренным характером движения системы отсчета. Свойства: пропорциональна ускорению, пропорциональна массе тела, направлена против вектора ускорения с которым движется НСО. (В НСО ВТОРОЙ ЗАКОН НЬЮТОНА НЕ ВЫПОЛНЯЕТСЯ)

Способы описания механического движения.

по средством указания вектора Aв каждый момент времени –

векторный способ,естественный –по параметрам движения например пройденному частицей.

Координатный – посредством указаний проекций в декартовой системе координат.

Векторный способ описания движения заключается в нахождении величины и направления радиус-вектора rв любой

Читайте также:  Выучить таблицу умножения по таблице пифагора легкий способ

момент времени, т. е. установлении вида зависимости:

r(t) = r(t)·er(t),

где r(t) — модуль (величина) радиус-вектора;

er(t) — единичный век тор, задающий направление вектора r.

er = r/r = ,

Эквивалентность различных способов описания движения.

Источник

Способы описания механического движения естественный векторный координатный

Движение. Виды движений. Описание движения. Система отсчета.

Механическим движением тела (точки) называется изменение его положения в пространстве относительно других тел с течением времени.

А) Равномерное прямолинейное движение материальной точки.

Б) Равноускоренное прямолинейное движение материальной точки.

В) Движение тела по дуге окружности с постоянной по модулю скоростью.

Г) Гармоническое колебательное движение. Важным случаем механического движения являются колебания, при которых параметры движения точки (координаты, скорость, ускорение) повторяются через определенные промежутки времени.

1. Векторный способ описания движения

ОПРЕДЕЛЕНИЕ: Векторный способ описания движения – это описание изменения радиус-вектора материальной точки в пространстве с течением времени.

Рассмотрим движение точки М в некоторой системе отсчета Oxyz (рис.1). Зададим радиус-вектор точки r — вектор, соединяющий начало координат с этой точкой.

При движении точки M вектор r будет с течением времени изменяться, т.е. будет каким-то образом зависеть от времени. Эта зависимость r = r ( t ) представляет собой закон движения в векторном виде.

В процессе движения конец радиус-вектора будет описывать траекторию, а его изменение – перемещение s точки.

2. Координатный способ описания движения

ОПРЕДЕЛЕНИЕ: Координатный способ описания движения – описание изменения во времени координат точки в выбранной системе отсчета.

В декартовой системе координат положение точки определяется тройкой чисел ( x , y , z ) — ее декартовыми координатами.

Чтобы задать закон движения точки, необходимо знать значения ее координат в каждый момент времени. Закон движения в координатном виде в общем случае представляет собой систему трех уравнений: x = x ( t ), y = y ( t ), z = z ( t )

Между векторным и координатным способом описания движения существует непосредственная связь, а именно: числовые значения проекций радиус-вектора движущейся точки на координатные оси системы с тем же началом отсчета равны координатам точки: rx = x , ry = y , rz = z .

3. Естественный способ описания движения

ОПРЕДЕЛЕНИЕ: Естественный способ описания движения – описание движения вдоль траектории. Этим способом пользуются, когда траектория точки заранее известна.

Пусть точка М движется вдоль траектории АВ в системе отсчета Oxyz (рис.3). Выберем на траектории какую-нибудь неподвижную точку О 1 , которую будем считать началом отсчета, и определим положительное и отрицательное направления. Тогда положение точки M будет определяться расстоянием S от точки О 1 . При движении точка М переместится в точку М 1 , соответственно изменится ее расстояние от точки О 1 . Таким образом, расстояние S зависит от времени, а характер этой зависимости позволит определить положение точки М на траектории в любой момент времени. Закон движения в этом случае имеет вид: s = s ( t ) .

Под системой отсчета понимают тело отсчета, которое условно считается неподвижным, систему координат, связанную с телом отсчета, и часы, также связанные с телом отсчета. В кинематике система отсчета выбирается в соответствии с конкретными условиями задачи описания движения тела.

Источник

Оцените статью
Разные способы