- Движение твердого тела
- Виды движения твердых тел
- Готовые работы на аналогичную тему
- Движение центра инерции твердого тела
- Сложное движение точки
- Импульс тела
- Механическое движение и его характеристики
- теория по физике 🧲 кинематика
- Механическое движение и его виды
- Что нужно для описания механического движения?
- Виды систем координат
- Способы описания механического движения
- Координатный способ
- Векторный способ
- Характеристики механического движения
- Перемещение
- Скорость
- Ускорение
- Проекция вектора перемещения на ось координат
- Знаки проекций перемещения
Движение твердого тела
Вы будете перенаправлены на Автор24
Любое твердое тело имеет возможность двигаться в любом направлении. Это неотъемлемое свойство каждого физического объекта. Для точного понимания происходящих вокруг процессов необходимо ввести описание движения твердого тела. Это необходимо для существования и использования самой системы отсчета, которая служит для пространственно-временного описания разнообразных движений. Такая система может быть связана только с понятием твердого тела. Эта означает, что изучение процессов движения твердых тел тождественно изучению движения систем отсчета.
Рисунок 1. Простейшие движения твердого тела. Автор24 — интернет-биржа студенческих работ
Виды движения твердых тел
Различают основные виды движения твердых тел:
- вращательное;
- поступательное;
- плоское;
- свободное;
- сферическое.
При вращательном движении твердого тела все точки, которые лежат на определенной прямой, что носит название ось вращения, остаются в неподвижном состоянии. Как пример, движение двери, когда ее открывают или закрывают.
Рисунок 2. Плоское движение. Автор24 — интернет-биржа студенческих работ
Поступательное движение характеризуется наличием прямой, которая соединяет любые две точки тела. Эта прямая перемещается, но при этом остается в параллельном положении по сравнению со своим первоначальным состоянием в пространстве. Такое движение совершает транспортное средство, которое движется вдоль железнодорожных путей.
Готовые работы на аналогичную тему
При плоском движении твердого тела все точки определенного объекта должны двигаться в плоскостях, которые идут параллельно определенной плоскости, однако при этом сама плоскость остается в неподвижном состоянии в рассматриваемой системе отсчета. Такое движение характерно для колеса, что совершает вращение вокруг своей оси во время поездки по прямому участку дороги.
Свободное движение твердого тела представляют в виде свободного произвольного движения объекта. Оно может сочетать признаки вращательного, поступательного, плоского и сферического движения вместе.
При сферическом движении одна из точек тела должна всегда оставаться в неподвижном состоянии все время. Его можно представить в виде гироскопа.
Рисунок 3. Поступательное движение. Автор24 — интернет-биржа студенческих работ
Основными движениями твердых тел в естественных условиях являются поступательное и вращательное движение. Все остальные представленные виды движения сводятся к одному из основных движений или их совокупности в определенный отрезок времени.
Движение центра инерции твердого тела
Движение твердого тела представляют в виде результата суммы поступательного и вращательного движений. При этом любая произвольная точка твердого тела будет испытывать перемещение. Это перемещение будет одинаковым во всех точках тела. Если разделить его на определенный промежуток времени, то можно вычислить скорость этой точки. Она будет одинакова для всех точек при поступательном движении.
Каждое твердое тело возможно представить в виде определенной совокупности материальных точек. Между ними расстояние будет неизменным. Известно, что любая точка тела может осуществлять движение под действием различных внутренних и внешних усилий. Это движение соответствует Второму закону Ньютона.
В твердом теле центр масс движется таким же образом как производит движение материальная точка массы, когда на нее действует внешняя сила. Подобное движение твердого тела вычисляется несколькими уравнениями.
При рассмотрении движения тела вокруг неподвижной оси необходимо взять любое произвольное тело, у которого ось вращения будет закреплена в неподвижных частях. После этого можно разбить тело на элементарные массы и вычислить модуль момента импульса. Момент импульса исследуемого тела будет относителен оси. Сумма произведений элементарных масс на квадрат до расстояния выбранной произвольным способом оси будет заключать в себе понятие момента инерции всего тела.
Сложное движение точки
Движение, при котором точка одновременно участвует в нескольких параллельных движениях, является сложным движением. В таком движении тела положение точки можно определить относительно неподвижной или подвижной системы отсчета.
Переносным движением точки можно назвать такое движение тела, при котором движение этой точки в подвижной системе отсчета полностью совпадает в определенный момент с движением точки относительно неподвижной системы отсчета.
Относительное движение определяется, как движение точки относительно подвижной системы отсчета. Для разных видов движения устанавливаются собственные параметры.
Отсюда можно понять, как обозначается сложное движение точки. Его также принято называть абсолютным движением тела. Оно определяется, как движение точки относительно неподвижной системы отсчета в целом.
Ярким примером подобного вида движения твердого тела можно считать момент передвижения человека, находящегося в движущемся по дороге транспорте. Движение человека в этой системе отсчета будет отнесено к подвижной и неподвижной системе координат. Ими можно считать сам транспорт и дорогу, которая остается неподвижной относительно движущихся транспорта и человека.
Импульс тела
Рисунок 4. Импульс тела. Автор24 — интернет-биржа студенческих работ
В основе движения твердого тела лежат основные законы механики, которые сформулировал Исаак Ньютон. Для вычисления импульса тела необходимо введение следующих величин:
В основе основного раздела механики лежат три главных закона Ньютона. Первый из них гласит, что любая материальная точка или тело может сохранять состояние покоя, а также осуществлять равномерное прямолинейное движение. Движение происходит до того момента, пока иное воздействие других тел не заставит изменить первоначальные параметры движения этого тела.
При этом тело пытается все время сохранить состояние покоя или равномерное прямолинейное движение. Такое стремление также называют инертностью.
Второй закон Ньютона называют еще основным законом динамики поступательного движения. Он может ответить на вопрос об изменении механического движения определенной материальной точки или твердого тела, когда на нее действуют внешние силы.
Источник
Механическое движение и его характеристики
теория по физике 🧲 кинематика
Механика — раздел физики, который изучает механическое движение физических тел и взаимодействие между ними.
Основная задача механики — определение положение тела в пространстве в любой момент времени.
Механическое движение — изменение положения тела в пространстве относительно других тел с течением времени.
Механическое движение и его виды
По характеру движения точек тела выделяют три вида механического движения:
- Поступательное. Это движение, при котором все точки тела движутся одинаково. Если через тело мысленно провести прямую, то после изменения положения этого тела в пространстве данная прямая останется параллельной самой себе.
- Вращательное. Это движение, при котором все точки тела движутся, описывая окружности.
- Колебательное. Это движение тела, которое повторяется точно или приблизительно через определенные интервалы времени. От вращательного движения его отличает то, что при колебаниях тело перемещается в двух взаимно противоположных направлениях.
По типу линии, вдоль которой движется тело, выделяют два вида движения:
- Прямолинейное — тело движется по прямой линии.
- Криволинейное — тело движется по кривой линии, в том числе замкнутой.
По скорости выделяют два вида движения:
- Равномерное — скорость движущегося тела остается неизменной.
- Неравномерное — скорость движущегося тела с течением времени меняется.
По ускорению выделяют три вида движения:
- Равноускоренное — тело движется неравномерно с постоянным ускорением (положительным). Скорость увеличивается.
- Равнозамедленное — тело движется неравномерно с постоянным замедлением (отрицательным ускорением). Скорость уменьшается.
- Ускоренное — тело движется неравномерно с меняющимся ускорением. Скорость может, как увеличиваться, так и уменьшаться.
Что нужно для описания механического движения?
Для описания механического движения нужно выбрать, относительно какого тела оно будет рассматриваться. Движение одного и того же объекта относительно разных тел неодинаковое. К примеру, идущий человек относительно дерева движется с некоторой скоростью. Но относительно сумки, которую он держит в руках, он находится в состоянии покоя, так как расстояние между ними с течением времени не изменяется.
Решение основной задачи механики — определения положения тела в пространстве в любой момент времени — заключается в вычислении координат его точек. Чтобы вычислить координаты тела, нужно ввести систему координат и связать с ней тело отсчета. Также понадобится прибор для измерения времени. Все это вместе составляет систему отсчета.
Система отсчета — совокупность тела отсчета и связанных с ним системы координат и часов.
Тело отсчета — тело, относительно которого рассматривается движение.
Часы — прибор для отсчета времени. Время измеряется в секундах (с).
При описании движения тела важно учитывать его размеры, так как характер движения его отдельных точек может различаться. Но в рамках некоторых задач размер тела не влияет на результат решения. Тогда его можно считать пренебрежительно малым. Тогда тело рассматривают как движущуюся материальную точку.
Материальная точка — это тело, размерами которого можно пренебречь в условиях конкретной задачи. Допустимо принимать тело за точку, если оно движется поступательно или его размеры намного меньше расстояний, которые оно проходит.
Виды систем координат
В зависимости от характера движения тела для его описания выбирают одну из трех систем координат:
- Одномерную. Используется, когда положение материальной точки можно задать только одной координатой x — M(x) . В этом случае тело движется прямолинейно.
- Двумерную. Используется, когда положение материальной точки можно задать двумя координатами x и y — M(x,y). Тело в этом случае движения по плоскости.
- Трехмерную. Используется, когда положение материальной точки можно задать тремя координатами x, y и z — M(x,y,z). Тело в этом случае изменяет положение в трехмерном пространстве.
Способы описания механического движения
Описать механическое движение можно двумя способами:
Координатный способ
Указать положение материальной точки в пространстве можно, используя трехмерную систему координат. Если эта точка движется, то ее координаты с течением времени меняются. Так как координаты точки зависят от времени, можно считать, что они являются функциями времени. Математически это записывается так:
Эти уравнения называют кинематическими уравнениями движения точки, записанными в координатной форме.
Векторный способ
Радиус-вектор точки — вектор, начало которого совпадает с началом системы координат, а конец — с положением этой точки.
Указать положение точки в трехмерном пространстве также можно с помощью радиус-вектора. При движении точки радиус-вектор со временем изменяется. Он может менять направление и длину. Это значит, что радиус-вектор тоже можно принять за функцию времени. Математически это записывается так:
Эта формула называется кинематическим уравнением движения точки, записанным в векторной форме.
Характеристики механического движения
Движение материальной точки характеризуют три физические величины:
Перемещение
Перемещение (вектор перемещения) — направленный отрезок, начало которого совпадает с начальным положением точки, а конец — с его конечным положением. Обозначается как S .
Перемещение точки определяется как изменение радиус-вектора. Это изменение обозначается как Δ r . С точки зрения геометрии вектор перемещения равен разности радиус-векторов, задающих конечное и начальное положение точки:
Траектория — линия, которую описывает тело во время движения.
Путь — длина траектории. Обозначается буквой s. Единица измерения — метры (м).
Путь есть функция времени:
Модуль перемещения — длина вектора перемещения. Обозначается как |Δ r |. Единица измерения — метры (м).
Модуль перемещения необязательно должен совпадать с длиной пути.
Пример №1. Человек обошел круглое поле диаметром 1 км. Чему равны пройденный путь и перемещение, которое он совершил.
Путь равен длине окружности. Поэтому:
Человек, обойдя круглое поле, вернулся в ту же точку. Поэтому его начальное положение совпадает с конечным. В этом случае человек совершил перемещение, равное нулю.
Пример №2. Точка движется по окружности радиусом 10 м. Чему равен путь, пройденный этой точкой, в момент, когда модуль перемещения равен диаметру окружности?
Диаметр — это отрезок, который соединяет две точки окружности и проходит через центр. Перемещение равно длине этого отрезка в случае, если один из концов этого отрезка является началом вектора перемещения, а другой — его концом. Траекторией движения в этом случае является дуга, равная половине окружности. А длина траектории есть путь:
Скорость
Скорость — векторная физическая величина, характеризующая быстроту перемещения тела. Численно она равна отношению перемещения за малый промежуток времени к величине этого промежутка.
В физике скорость обозначается V . Математически скорость определяется формулой:
Скорость характеризуется не только направлением вектора скорости, но и его модулем.
Модуль скорости — расстояние, пройденное точкой за единицу времени. Обозначается буквой V и измеряется в метрах в секунду (м/с).
Математическое определение модуля скорости:
Величина скорости тела в данный момент времени есть первая производная от пройденного пути по времени:
Ускорение
Ускорение — векторная физическая величина, которая характеризует быстроту изменения скорости тела. Численно она равна отношению изменения скорости за малый промежуток времени к величине этого промежутка.
В физике ускорение обозначается a . Математически оно определяется формулой:
Модуль ускорения — численное изменение скорости в единицу времени. Обозначается буквой a. Единица измерения — метры в секунду в квадрате (м/с 2 ).
Математическое определение модуля скорости:
v — скорость тела в данный момент времени, v0— его скорость в начальный момент времени, t — время, в течение которого эта скорость менялась.
Ускорение тела есть первая производная от скорости или вторая производная от пройденного пути по времени:
Проекция вектора перемещения на ось координат
Проекция вектора перемещения на ось — это скалярная величина, численно равная разности конечной и начальной координат.
Проекция вектора на ось OX:
Проекция вектора на ось OY:
Знаки проекций перемещения
- Проекция является положительной, если движение от начала проекции вектора к проекции конца происходит сонаправленно оси координат.
- Проекция является отрицательной, если движение от начала проекции вектора к проекции конца направлено в сторону, противоположную направлению координатной оси.
Внимание!
Проекция вектора перемещения на ось считается нулевой, если вектор расположен перпендикулярно этой оси.
Модуль перемещения — длина вектора перемещения:
Модуль перемещения измеряется в метрах (м).
Вместе с собственными проекциями модуль перемещения образует прямоугольный треугольник. Сам он является гипотенузой этого треугольника. Поэтому для его вычисления можно применить теорему Пифагора. Выглядит это так:
Выразив проекции вектора перемещения через координаты, эта формула примет вид:
Выражение проекций вектора перемещения через угол его наклона по отношению к координатным осям:
Общий вид уравнений координат:
Пример №3. Определить проекции вектора перемещения на ось OX, OY и вычислить его модуль.
Определяем координаты начальной точки вектора:
Определяем координаты конечной точки вектора:
Проекция вектора перемещения на ось OX:
Проекция вектора перемещения на ось OY:
Применяем формулу для вычисления модуля вектора перемещения:
Пример №4. Определить координаты конечной точки B вектора перемещения, если начальная точка A имеет координаты (–5;5). Учесть, что проекция перемещения на OX равна 10, а проекция перемещения на OY равна 5.
Извлекаем известные данные:
Для определения координаты точки В понадобятся формулы:
Выразим из них координаты конечного положения точки:
Точка В имеет координаты (5; 10).
Алгоритм решения
- Записать исходные данные в определенной системе отсчета.
- Записать формулу ускорения.
- Выразить из формулы ускорения скорость.
- Найти искомую величину.
Решение
Записываем исходные данные:
- Тело начинает двигаться из состояния покоя. Поэтому его начальная скорость v0 = 0 м/с.
- Ускорение, с которым тело начинает движение, равно: a = 4 м/с 2 .
- Время движения согласно условию задачи равно: t = 2 c.
Записываем формулу ускорения:
Так как начальная скорость равна 0, эта формула принимает вид :
Отсюда скорость равна:
Подставляем имеющиеся данные и вычисляем:
pазбирался: Алиса Никитина | обсудить разбор | оценить
Источник