- Устройство и принцип работы системы охлаждения двигателя
- Виды систем охлаждения двигателя
- Устройство и принцип работы системы охлаждения ДВС
- Как устроен радиатор охлаждения двигателя
- Особенности работы датчика температуры ОЖ
- Что используют в качестве охлаждающих жидкостей
- Устройство автомобилей
- Система охлаждения двигателя
- Требования к системе охлаждения
- Способы охлаждения двигателя
- Преимущества и недостатки систем охлаждения
Устройство и принцип работы системы охлаждения двигателя
Помимо главной функции отвода тепла от основных узлов двигателя автомобиля, система охлаждения решает ряд дополнительных задач. Фактически она участвует в работе системы смазки, отопления салона, выхлопа и рециркуляции отработавших газов, турбонаддува и коробки передач. О том, как она устроена, а также в чем заключается принцип работы охлаждающей системы и пойдет речь далее.
Виды систем охлаждения двигателя
Регулирование температуры автомобильного двигателя может осуществляться при помощи охлаждающей жидкости (антифриза, ОЖ) и посредством циркуляции воздуха. Исходя из этого различают три вида систем:
- Воздушная. Физически представляет собой обдув, благодаря которому происходит вытеснение горячего воздуха из подкапотного пространства в атмосферу. Воздушное охлаждение может быть естественным и принудительным (с использованием вентилятора). В силу низкой эффективности как самостоятельная система практически не применяется.
- Жидкостная. Представляет собой систему трубчатых контуров, по которым циркулирует охлаждающая жидкость. Жидкостное охлаждение может быть принудительным (перекачка насосом), термосифонным (за счет разности в плотности нагретой и охлажденной жидкостей) и комбинированным (охлаждение головки блока цилиндров осуществляется принудительно, а остальные узлы термосифонным принципом). Такая система более эффективна в сравнении с воздушной, но при определенных режимах работы (длительный простой с включенным двигателем, повышенные температуры окружающей среды) может быть недостаточной для качественного охлаждения.
- Комбинированная. Представляет собой использование и воздушного обдува, и жидкостных контуров.
Системы охлаждения на основе жидкости также разделяются на открытые и закрытые. Первые имеют сообщение с атмосферой при помощи пароотводной трубки, а во вторых жидкость полностью изолирована от окружающей среды. В закрытых системах давление антифриза больше, а следовательно, выше и температура кипения. Это позволяет использовать их при высоких температурах нагрева жидкости (до 120°C).
Устройство и принцип работы системы охлаждения ДВС
Наиболее популярной в современных автомобилях является комбинированная система охлаждения двигателя с принудительной циркуляцией воздуха и жидкости. Она состоит из следующих элементов:
- Радиатор системы охлаждения.
- Вентилятор радиатора.
- Малый и большой охлаждающие контуры.
- Рубашка системы охлаждения (система каналов в блоке цилиндров).
- Датчик температуры.
- Термостат.
- Расширительный бачок.
- Насос (помпа).
- Радиатор печки.
- Масляный радиатор (опционально).
- Радиатор системы рециркуляции отработавших газов (опционально).
В момент запуска двигателя насос начинает перекачку жидкости по малому контуру. Когда двигатель нагревается до рабочей температуры, срабатывает термостат и открывает второй (большой) контур охлаждения. Проходя через узлы мотора, охлаждающая жидкость нагревается и расширяется. При увеличении температуры часть жидкости поступает в расширительный бачок. Это позволяет компенсировать излишний объем, независимо от того, какое давление установилось в системе.
Большой и малый круги циркуляции ОЖ
Проходя через участок радиатора системы охлаждения, антифриз вновь остывает и возвращается на новый цикл. Если этот режим снижения температуры оказывается недостаточным, срабатывает температурный датчик, передающий сигнал блоку управления двигателя и запускающий вентилятор воздушного охлаждения. Если и его оказывается недостаточно, на приборную панель (индикатор) поступает сигнал о перегреве двигателя.
Масляный радиатор и радиатор рециркуляции отработавших газов может присутствовать не во всех системах охлаждения. Они необходимы для синхронного снижения температуры смазки и выхлопа, что делает эксплуатацию автомобиля более безопасной и экономичной. В автомобилях с турбонаддувом также может присутствовать еще один охлаждающий контур для снижения температуры воздуха наддува.
Как устроен радиатор охлаждения двигателя
Радиатор системы охлаждения ДВС состоит из следующих элементов:
- Сердцевина. Она может быть трубчатой (вертикальные трубки овального или круглого сечения, объединенные тонкими горизонтальными пластинами), пластинчатой (изогнутые пары пластин, спаянные по краям) и сотовой (спаянные трубки с сечением в виде правильного шестиугольника).
- Верхний бачок. Оснащен заливной горловиной с герметичной пробкой, а также патрубком для установки шланга, подводящего антифриз. В горловине выполнено отверстие для установки пароотводящей трубки. Последняя имеет паровой клапан, который открывается в случае закипания.
- Воздушный клапан. Он необходим для наполнения радиатора воздухом после остановки двигателя. Когда охлаждающая жидкость полностью остывает, без подачи дополнительного объема воздуха в системе может возникнуть сильное разрежение, провоцирующее сдавливание трубок.
- Нижний бачок. Оснащен патрубком для крепления шланга отвода жидкости.
- Крепления.
Принцип работы радиатора основан на многоуровневой циркуляции воздуха в его сердцевине, что делает снижение температуры охлаждающей жидкости, проходящей через него, более интенсивным.
Наиболее эффективными являются радиаторы пластинчатого типа, но они подвержены быстрому загрязнению, а потому самой популярной конструкцией стали трубчатые.
Особенности работы датчика температуры ОЖ
Температурный датчик позволяет контролировать состояние системы. Определить, где находится датчик температуры охлаждающей жидкости просто: как правило, он расположен в канале головки блока цилиндров. Он представляет собой терморезистор в герметичном корпусе, который может быть изготовлен из бронзы, пластика и латуни. На корпусе имеется резьба для установки в канал.
Принцип работы датчика основан на следующем эффекте: при повышении температуры сопротивление чувствительного элемента снижается, а при ее уменьшении увеличивается. Показатель сопротивления передается на электронный блок управления двигателем. Чтобы при этом данные состояния охлаждающей жидкости были точными, датчик должен быть полностью погружен в нее. При температуре 100°C сопротивление датчика температуры охлаждающей жидкости должно быть порядка 177 Ом. С учетом погрешностей измерения допускается показатель сопротивления 190 Ом. Если же отклонения больше допустимых, датчик необходимо заменить.
Проверить автомобиль на наличие неисправностей, в том числе и датчика температуры ОЖ, проще всего при помощи автомобильного диагностического сканера. К примеру, это можно сделать недорогим мультимарочным устройством Rokodil ScanX.
Мультибрендовый сканер Rokodil ScanX
После диагностики авто, сканер укажет на имеющиеся коды ошибок. В частности если появились ошибки P0115 — P0119, причина неисправности будет в самом датчике ОЖ, разъеме подключения или проводке. После чего необходимо более детально рассмотреть причину неисправности. Также с помощью Rokodil ScanX можно проверить показания датчика в режиме реального времени. На “холодном” двигателе его показания должны быть примерно равны температуре окружающей среды, а на горячем не превышать 150 ˚С.
В некоторых моделях автомобилей может быть предусмотрено два датчика температуры. Один отвечает исключительно за включение вентилятора радиатора, а второй представляет собой датчик указателя текущей температуры охлаждающей жидкости.
Что используют в качестве охлаждающих жидкостей
В роли рабочей жидкости в системах охлаждения изначально применялась дистиллированная или деионизированная вода. Однако для современных двигателей она не обеспечивает нужный диапазон рабочих температур. Помимо этого, она склонна к коррозионной активности в отношении металлов, что снижает срок эксплуатации системы охлаждения. Для устранения этих недостатков в качестве охлаждающей жидкости сегодня применяются составы со специальными присадками (этиленгликоль, ингибиторы коррозии), что повышает характеристики всей системы. Чаще всего используется антифриз, который имеет более низкий порог замерзания.
При возникновении ситуации, когда требуется экстренный долив охлаждающей жидкости, можно использовать обычную чистую воду. Однако для корректной работы системы при первой возможности такой раствор необходимо заменить на качественный антифриз.
Замена охлаждающей жидкости проводится каждые 60-100 тысяч километров пробега. В охлажденном состоянии (при выключенном двигателе) ее количество должно быть на уровне нижнего края патрубка расширительного бачка охлаждающей системы. Для удобства на нем выполнены отметки “Min” и “Max”. Когда количество жидкости ниже минимальной отметки – выполняют долив. Если после работы уровень вновь упал – это свидетельствует о разгерметизации системы.
Значимость системы охлаждения двигателя не вызывает сомнений. А потому стоит регулярно проводить профилактический осмотр ее основных узлов. Это позволит избежать перегрева двигателя и возникновения критических поломок.
Источник
Устройство автомобилей
Система охлаждения двигателя
Система охлаждения предназначена для поддержания оптимального теплового режима двигателя, чтобы он не перегревался и не переохлаждался во время работы, поскольку и перегрев и переохлаждение вредны двигателю.
Сгорание топливовоздушной смеси в цилиндрах двигателя сопровождается выделением значительного количества теплоты. Если двигатель не охлаждать, или охлаждать недостаточно, то его детали могут нагреться до высокой температуры, а это уменьшает их прочность, вызывает значительные тепловые деформации и изменение размеров, ухудшает свойства и снижает вязкость масла смазочной системы, отрицательно сказывается на наполнении цилиндров горючей смесью, вызывает интенсивное отложение нагара на деталях.
Все это может привести к снижению эффективности работы двигателя и даже его отказу из-за потери работоспособности отдельных деталей, агрегатов и узлов.
Переохлаждение двигателя тоже крайне нежелательно. Оно сопровождается ростом механических потерь из-за повышения вязкости масла, ухудшением процессов смесеобразования и сгорания (особенно в дизелях), следствием чего являются повышенный расход топлива, снижение эффективности работы двигателя, интенсивный коррозийный износ деталей из-за отложения конденсата, и увеличение выброса в атмосферу токсичных продуктов неполного сгорания топлива.
Оптимальным для работы двигателя внутреннего сгорания является узкий температурный диапазон, который, например, у двигателей с жидкостной системой охлаждения, характеризуется температурой охлаждающей жидкости 85. 95 ˚С.
Требования к системе охлаждения
В связи с основным назначением, к системе охлаждения двигателя предъявляются следующие требования:
- автоматическое поддержание оптимального теплового режима в двигателе, независимо от режима его работы и внешних условий;
- надежная работа в условиях повышенных вибраций;
- малые габариты, масса и металлоемкость;
- технологичность и удобство в техническом обслуживании;
- быстрый прогрев двигателя до рабочей температуры;
- длительное сохранение теплоты после остановки двигателя;
- малые энергетические затраты на функционирование (затраты энергии двигателя, связанные с приводом агрегатов системы охлаждения);
- экологическая безопасность и минимальное коррозийное воздействие применяемых теплообменных материалов на детали двигателя.
Способы охлаждения двигателя
Отвод теплоты от деталей двигателя осуществляется при помощи различных способов – применением принудительной системы охлаждения, охлаждением маслом смазочной системы, теплообменом с более массивными сопрягаемыми деталями, работающими в благоприятном температурном режиме, рассеиванием теплоты с рабочих поверхностей перегретых деталей и т. п.
Очевидно, что естественного теплообмена с перегретыми деталями двигателя недостаточно, чтобы поддерживать их оптимальную температуру в рабочем режиме, поэтому в современных двигателях применяется принудительный отвод теплоты от деталей, несмотря на то, что это связано с увеличением энергетических затрат и тепловых потерь рабочего цикла двигателя.
Принудительное охлаждение осуществляется с помощью жидкости или воздуха, поэтому различают двигатели жидкостного и воздушного охлаждения.
Преимущества и недостатки систем охлаждения
Каждый из способов принудительного охлаждения имеет свои преимущества и недостатки.
Воздушная система охлаждения проста в эксплуатации, однако не может полностью обеспечить нормального теплового состояния деталей двигателя из-за неравномерности их охлаждения. Возникает необходимость использования принудительного направления движения воздуха в сочетании с оребрением двигателей, что приводит к увеличению уровня шума при работе двигателя, снижению его мощности, а также удорожанию деталей.
Теплопроводность жидких теплоносителей в 20…25 раз выше, чем у воздуха, поэтому жидкостная система охлаждения обеспечивает более эффективный теплоотвод и создает равномерное температурное поле охлаждения. Такая система охлаждения более инерционна — двигатель медленно прогревается, но и медленнее охлаждается.
Однако жидкостная система сложнее устроена, содержит в своей конструкции дорогостоящие узлы и детали для обеспечения циркуляции охлаждающей жидкости и теплообмена с внешней средой (радиатор).
Кроме того жидкостная система включает различные трубопроводы (патрубки, трубки), каналы и полости в охлаждаемых деталях для подвода и циркуляции жидкости, которые могут давать течь, снижая надежность и повышая стоимость двигателя в целом.
При эксплуатации автомобилей в условиях низких температур в жидкостной системе охлаждения приходится применять специальные низкозамерзающие жидкости, имеющие достаточно высокую стоимость, что тоже отрицательно сказывается на экономических показателях.
Кроме того, применяемые в современных двигателях низкозамерзающие жидкости имеют более низкую теплопроводность, по сравнению с обычной водой, уменьшая тем самым основное преимущество жидкостной системы охлаждения перед воздушной.
Тем не менее, несмотря на перечисленные недостатки, в двигателях современных автомобилей наибольшее распространение получило жидкостное охлаждение, как более полно удовлетворяющее требованиям, перечисленным выше. Несмотря на сложность конструкции и связанные с этим удорожание и снижение надежности, жидкостная система охлаждения обеспечивает надежное поддержание рабочей температуры двигателя в заданных интервалах, и способна автоматически поддерживать ее в широком диапазоне нагрузочных режимов.
Источник