- Digitrode
- цифровая электроника вычислительная техника встраиваемые системы
- Что такое пусковой ток и как его ограничить
- Что такое пусковой ток
- Почему появляется пусковой ток
- Пусковой ток трансформатора
- Пусковой ток двигателя
- Как ограничить пусковой ток
- Как измерить пусковой ток
- Методы снижения пусковых токов импульсных источников питания
- Технические характеристики источников питания
- Причины появления пусковых токов
- Методы ограничения пусковых токов
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
Что такое пусковой ток и как его ограничить
Что такое пусковой ток
Пусковой ток – это максимальный ток, потребляемый электрической цепью во время ее включения. Значение пускового тока намного выше, чем установившийся ток цепи, и этот высокий ток может повредить устройство или привести в действие автоматический выключатель. Пусковой ток обычно появляется во всех устройствах, где присутствует магнитный сердечник, таких как трансформаторы, промышленные двигатели и т. д. Пусковой ток также известен как входной импульсный ток или импульсный ток включения.
Почему появляется пусковой ток
Есть причина появления пускового тока. Подобно некоторым устройствам или системам, которые имеют развязывающий конденсатор или сглаживающий конденсатор, при запуске потребляется большое количество тока для их зарядки. Ниже приведенная диаграмма даст вам представление о разнице между пусковым, пиковым и установившимся током цепи.
Пиковый ток: это максимальное значение тока, достигаемое сигналом в положительной или отрицательной области.
Ток установившегося состояния: он определяется как ток в каждом интервале времени, который остается постоянным в цепи. Ток установившегося состояния достигается, когда di/dt = 0, что означает, что ток остается неизменным во времени.
Особенности пускового тока: появляется мгновенно, когда устройство включается; появляется на короткий промежуток времени; выше номинального значения цепи или устройства.
Пусковой ток трансформатора
Пусковой ток трансформатора определяется как максимальный мгновенный ток, потребляемый трансформатором, когда вторичная сторона не нагружена или находится в состоянии разомкнутой цепи. Этот бросок тока вредит магнитным свойствам сердечника и вызывает нежелательное переключение автоматического выключателя трансформатора.
Величина пускового тока зависит от точки волны переменного тока, в которой запускается трансформатор. Если трансформатор (без нагрузки) включается, когда напряжение переменного тока достигает своего пика, тогда пусковой ток не возникает при запуске, и если трансформатор (без нагрузки) включается, когда напряжение переменного тока проходит через ноль, то значение броска ток будет очень высоким, и он также будет превышать ток насыщения, как вы можете видеть на изображении выше.
Пусковой ток двигателя
Как и трансформатор, асинхронный двигатель не имеет непрерывного магнитного пути. Сопротивление асинхронного двигателя высокое из-за воздушного зазора между ротором и статором. Следовательно, из-за такого характера индуктивного устройства с высоким сопротивлением требуется большой ток намагничивания для создания вращающегося магнитного поля при запуске. График ниже показывает пусковые характеристики двигателя при полном напряжении.
Как вы можете видеть на графике, пусковой ток и пусковой момент очень высоки в начале. Этот высокий пусковой ток может повредить электрическую систему, а начальный высокий крутящий момент может повлиять на механическую систему двигателя. Если уменьшить начальное значение напряжения на 50%, это может привести к снижению крутящего момента двигателя на 75%. Таким образом, для преодоления этих проблем используются схемы питания с плавным пуском.
Как ограничить пусковой ток
Всегда следует помнить о пусковом токе в асинхронных двигателях, трансформаторах и в электронных цепях, которые состоят из катушек индуктивности, конденсаторов или сердечников. Как упоминалось ранее, пусковой ток – это максимальный пиковый ток, наблюдаемый в системе, и он может быть в два-десять раз больше нормального номинального тока. Этот нежелательный всплеск тока может повредить устройство, пусковой ток может вызвать срабатывание выключателя при каждом включении. Регулировка допуска выключателя может помочь нам, но компоненты должны выдерживать пиковое значение.
Находясь в электронной схеме, некоторые компоненты должны выдерживать высокие значения пускового тока в течение короткого промежутка времени. Но некоторые компоненты сильно нагреваются или повреждаются, если значение при быстром запуске очень велико. Поэтому лучше использовать схему защиты от пускового тока при проектировании электронной схемы или печатной платы.
Для защиты от пускового тока вы можете использовать активное или пассивное устройство. Выбор типа защиты зависит от частоты пускового тока, производительности, стоимости и надежности.
Вы можете использовать NTC-термистор (с отрицательным температурным коэффициентом), который является пассивным устройством, работает как электрический резистор, сопротивление которого очень высоко при низкотемпературном значении. Термистор NTC соединяется последовательно с входной линией питания. Обладает высокой устойчивостью при температуре окружающей среды. Поэтому, когда мы включаем устройство, высокое сопротивление ограничивает пусковой ток, который протекает в систему. По мере непрерывного протекания тока температура термистора повышается, что значительно снижает сопротивление. Следовательно, термистор стабилизирует пусковой ток и позволяет постоянному току течь в цепь. Термистор NTC широко используется для ограничения тока из-за его простой конструкции и низкой стоимости. У него также есть некоторые недостатки, например, нельзя полагаться на термистор в экстремальных погодных условиях.
Активные устройства ограничения пускового тока стоят дороже, а также увеличивают размер системы или схемы. Они состоят из чувствительных компонентов, которые переключают высокий входящий ток. Некоторые из активных устройств – устройства плавного пуска, регуляторы напряжения и преобразователи постоянного тока.
Эти средства защиты используются для защиты как электрической, так и механической системы путем ограничения мгновенного пускового тока. На приведенном ниже графике показано значение пускового тока со схемой защиты и без схемы защиты. Мы ясно видим, насколько эффективна защита от пускового тока.
Как измерить пусковой ток
Сегодня на рынке представлено большое количество клещей (мультиметров), которые обеспечивают измерение пускового тока. Также вы можете использовать токовые клещи Fluke 376 FC True-RMS для измерения пускового тока. Иногда пусковой ток показывает значение, которое выше номинального значения автоматического выключателя, но, тем не менее, автоматический выключатель не отключается. Причина этого заключается в том, что автоматический выключатель работает по кривой зависимости тока от времени, например, если бы вы использовали автоматический выключатель на 10 А, поэтому пусковой ток, превышающий 10 А, должен протекать через автоматический выключатель больше, чем номинальное время.
Выполните следующие шаги для измерения пускового тока:
- Тестируемое устройство должно быть отключено изначально.
- Поверните циферблат и установите переключатель на Hz-A.
- Поместите провод под напряжением в клещи или используйте датчик, соединенный с измерителем.
- Нажмите кнопку измерения пускового тока, как показано на рисунке выше.
- Включив испытуемое устройство, вы получите значение пускового тока на дисплее прибора.
Источник
Методы снижения пусковых токов импульсных источников питания
Александр Русу (г. Одесса)
Одна из главных проблем использования импульсных источников питания в светодиодных осветительных системах – ограничение пусковых токов, способных вывести эти системы из строя. Модульные решения, предусматриваюшие ограничение этих токов, предлагает компания MEAN WELL, а дискретные – для малосерийной продукции или индивидуальной разработки – сам автор статьи.
Маломощные импульсные источники питания (ИП) всегда пользовались стабильным спросом на рынке электроники – в системах промышленной автоматики, контроля доступа, пожарной безопасности и многих других. В последнее время этот список пополнился устройствами интернета вещей, умного дома и домашней автоматизации.
До недавнего времени использование ИП, независимо от того, являлись ли они универсальными блоками общего применения или разрабатывались для конкретного устройства, не вызывало особых технических проблем, но с началом эпохи светодиодного освещения ситуация изменилась не в лучшую сторону. Активное использование недорогих 12-вольтовых светодиодных лент увеличило число ИП в системах освещения, в результате чего стали появляться сбои в системах электроснабжения, вплоть до выхода оборудования из строя.
Суть проблемы заключается в значительной величине пускового тока (Inrush Current), возникающего в момент подключения блока питания к сети. Несмотря на то, что в каждом ИП приняты меры для его ограничения, все равно в большинстве устройств его величина может в десятки раз превышать ток, потребляемый при максимальной нагрузке. В результате одновременное включение нескольких ИП может приводить к срабатыванию защиты от короткого замыкания и вынуждает устанавливать автоматические выключатели либо с большим током, либо с большим временем срабатывания. Кроме того, при частом включении осветительных приборов резко уменьшается срок службы коммутирующих устройств – выключателей или реле, поскольку из-за чрезвычайно большого коммутируемого тока у них быстро прогорают контакты.
Хотя эта проблема не нова, до недавнего времени каких-либо готовых, а главное – доступных решений практически не было. Это и послужило поводом рассмотреть имеющиеся на рынке устройства для уменьшения пусковых токов, а также несколько доступных способов самостоятельного устранения этой проблемы.
Технические характеристики источников питания
На сегодняшний день создать ИП мощностью до 1 кВт не является сложной технической задачей. Доступность элементной базы и большое количество наработок в этой области позволяют в сжатые сроки наладить производство источников питания на основе известных компонентов и по известным рекомендациям. Неудивительно, что схемотехника, технические характеристики и внешний вид недорогих выпрямительных устройств как ведущих мировых производителей, так и малоизвестных компаний очень схожи.
Одними из недорогих источников питания, часто используемыми для питания светодиодных лент, являются модули серии LRS производства компании MEAN WELL (рисунок 1). При разработке данной линейки были использованы как последние достижения в области производства импульсных источников питания, так и самая современная элементная база, что позволило вывести ИП семейства LRS на современный технический уровень и обеспечить хорошее соотношение «цена/качество».
Рис. 1. Выпрямитель из семейства LRS
Ключевыми особенностями семейства LRS (таблица 1) являются возможность работы в универсальном диапазоне входных напряжений (85…264 B AC), компактный размер (высота профиля 1U – 30 мм), высокий КПД (до 91,2%) и малое потребление при отключении нагрузки (0,2…0,75 Вт). ИП семейства LRS имеют множество сертификатов, среди которых IEC/EN 60335-1 (PD3) и IEC/EN61558-1, 2-16. Все источники питания LRS проходят тестирование при 100% нагрузки и имеют трехлетнюю гарантию.
Таблица 1. Основные технические характеристики выпрямителей семейства LRS
Наименование | Номинальная выходная мощность, Вт | Выходное напряжение, В | Входное напряжение В AC | Потребляемый ток при 230 В АС, А | Стартовый ток при 230 В АС, А |
---|---|---|---|---|---|
LRS-35 | 35 | 5…48 | 85…264 | 0,42 | 45 |
LRS-50 | 50 | 3,3…48 | 85…264 | 0,56 | 45 |
LRS-75 | 75 | 5…48 | 85…264 | 0,85 | 65 |
LRS-100 | 100 | 3,3…48 | 85…264 | 1,2 | 50 |
LRS-150 | 150 | 12…48 | 85…132/170…264 | 1,7 | 60 |
LRS-150F | 150 | 5…48 | 85…264 | 1,7 | 60 |
LRS-200 | 200 | 3,3…48 | 90…132/180…264 | 2,2 | 60 |
LRS-350 | 350 | 3,3…48 | 90…132/180…264 | 3,4 | 60 |
Одной из специфических особенностей светодиодного освещения является возможность установки оборудования в специализированных электрических шкафах, поэтому наряду с ИП в перфорированных корпусах на практике может возникнуть реальная потребность в модулях с форм-фактором, рассчитанном на установку на DIN-рейку. В этом случае следует обратить внимание на семейство HDR производства компании MEAN WELL, выпускаемое в малогабаритных пластмассовых корпусах (рисунок 2).
Рис. 2. Внешний вид выпрямителей семейства HDR производства MEAN WELL
Несмотря на то, что выпрямители HDR изначально были спроектированы для использования в автоматизированных системах управления и имеют изоляцию с электрической прочностью вплоть до Class II, сфера их применения не ограничивается питанием только промышленных контроллеров. Благодаря широкому диапазону входных напряжений, хорошему уровню электробезопасности, высокому КПД и малому энергопотреблению при отключении нагрузки (не более 0,3 Вт) эти модули (таблица 2) можно с успехом применить в самых разнообразных приложениях, начиная от питания элементов сложных технологических линий и заканчивая тем же светодиодным освещением.
Таблица 2. Основные технические характеристики выпрямителей семейства HDR
Наименование | Максимальная выходная мощность, Вт | Выходное напряжение, В | Входное напряжение, В AC | Потребляемый ток при 230 В АС, А | Стартовый ток при 230 В АС, А |
---|---|---|---|---|---|
HDR-15 | 15 | 5…48 | 85…264 | 0,25 | 45 |
HDR-30 | 36 | 5…48 | 85…264 | 0,48 | 25 |
HDR-60 | 60 | 5…48 | 85…264 | 0,8 | 60 |
HDR-100 | 100 | 12…48 | 85…264 | 1,6 | 70 |
HDR-150 | 150 | 12…48 | 85…264 | 1,6 | 70 |
Анализируя данные таблиц 1 и 2, можно увидеть, что у всех рассмотренных ИП пусковой ток в десятки раз превышает ток, потребляемый при максимальной нагрузке. Причем чем меньше мощность источника питания, тем больше это соотношение. Например, для самой маломощной из рассмотренных моделей – ИП HDR-15 пусковой ток (45 А), согласно технической документации, в 180 раз превышает максимальное значение во время работы (0,25 А). Для мощных выпрямителей это соотношение хоть и немного меньше, но все равно является достаточно большим. Абсолютный рекорд по величине пускового тока (70 А) принадлежит моделям HDR-150. При таком пусковом токе в момент включения устройства хоть и кратковременно, но будет потребляться около 15 кВт, что достаточно много даже для промышленного оборудования.
Ситуацию не спасает и введение в ИП корректора коэффициента мощности (ККМ). Если проанализировать технические характеристики модулей семейства RSP производства MEAN WELL (рисунок 3), отличающихся от рассмотренных выше выпрямителей LRS наличием активного корректора коэффициента мощности, то окажется, что их пусковые токи также превышают номинальные значения в 15…70 раз (таблица 3). Это, конечно, меньше, чем в модулях без ККМ, однако все равно много, даже несмотря на высокий коэффициент мощности (не менее 0,93).
Рис. 3. Выпрямитель семейства RSP производства MEAN WELL
Таблица 3. Основные технические характеристики выпрямителей семейства RSP
Наименование | Максимальная выходная мощность, Вт | Выходное напряжение, В | Входное напряжение, В АС | Потребляемый ток при 230 В АС, А | Стартовый ток при 230 В АС, А |
---|---|---|---|---|---|
RSP-75 | 75 | 3,3…48 | 85…264 | 0,5 | 35 |
RSP-100 | 100 | 3,3…48 | 85…264 | 0,55 | 30 |
RSP-150 | 150 | 3,3…48 | 85…264 | 0,8 | 45 |
RSP-200 | 200 | 2,5…48 | 88…264 | 1,1 | 40 |
RSP-320 | 320 | 2,5…12 | 88…264 | 1,5 | 40 |
RSP-500 | 500 | 3,3…48 | 85…264 | 2,65 | 40 |
Причины появления пусковых токов
На сегодняшний день большинство ИП изготавливается по схеме с бестрансформаторным входом. Ключевыми элементами данной схемы являются выпрямитель, реализуемый чаще всего по мостовой схеме, и входной сглаживающий конденсатор (рисунок 4).
Рис. 4. Типовая схема входной цепи выпрямительного устройства с бестрансформаторным входом
До включения блока питания конденсатор C1 полностью разряжен и напряжение на нем равно нулю, в то время как в рабочем режиме оно достигает амплитудного значения напряжения сети, равного, при входном напряжении 220 В, около 310 В. Поскольку напряжение на конденсаторе измениться мгновенно не может, то в момент включения схемы обязательно должен произойти бросок тока из-за необходимости заряда конденсатора фильтра.
Максимальное значение пускового тока зависит не только от электрических характеристик элементов схемы, но и от момента включения ее в сеть. Наихудшим случаем считается подключение к сети в моменты, когда ее напряжение равно амплитудным значениям. В этом случае к диодам выпрямителя VD1…VD4 прикладывается прямое напряжение около 310 В, и их ток ограничивается лишь активными сопротивлениями кристаллов, соединительных проводников и внутренним последовательным сопротивлением конденсатора. Очевидно, что если не принимать никаких мер, то начальное значение пускового тока может превысить 100 А даже при небольшой емкости конденсатора C1.
Несмотря на то, что выпрямительные полупроводниковые диоды VD1…VD4 обычно выдерживают подобные перегрузки, столь высокое значение тока может значительно сократить срок их службы и вывести из строя. Для предотвращения этого пусковой ток даже в маломощных схемах обычно ограничивается с помощью резистора, сопротивление которого выбирается таким, чтобы ток через диоды выпрямителя в самом худшем случае не превышал максимально допустимое значение для данного режима работы.
Однако последовательное включение сопротивления приводит к увеличению потерь, величина которых может оказаться недопустимо большой. Для исключения этого в выпрямителях вместо резистора чаще всего устанавливают термистор с отрицательным температурным коэффициентом сопротивления. В момент включения, когда сопротивление термистора велико, пусковой ток мал. После запуска источника питания ток, протекающий через термистор, разогревает его, что приводит к снижению его сопротивления и, как следствие, к уменьшению влияния на работу схемы. Несмотря на простоту, у такого способа есть один серьезный недостаток – при частой коммутации, например, когда ИП включается сразу после выключения, термистор не успевает остыть и ограничение пускового тока происходит не так эффективно.
Таким образом, в импульсных ИП, построенных по классическим схемам, пусковой ток ограничивается лишь на уровне, обеспечивающем безопасный режим работы выпрямительных диодов, поскольку использование иного решения приведет или к уменьшению КПД системы в целом, или к ее существенному удорожанию. Очевидно, что проблему пусковых токов в большинстве случаев необходимо решать другими способами.
Методы ограничения пусковых токов
При анализе схемотехники импульсных выпрямительных устройств с бестрансформаторным входом становится понятно, что одним из наилучших методов уменьшения пусковых токов является кратковременное увеличение сопротивления входной цепи в момент включения. Именно по такому пути пошла компания MEAN WELL, представив на рынке серию ограничителей пусковых токов семейства ICL (рисунок 5).
Рис. 5. Ограничители пусковых токов производства компании MEAN WELL
На сегодняшний день MEAN WELL предлагает своим клиентам четыре модели ограничителей с максимальным пусковым током 23 А (ICL-16R/L) и 48 А (ICL-28R/L), предназначенные для установки на DIN-рейку (модели с суффиксом R) или на шасси (модели с суффиксом L). Основными элементами модулей являются мощные токоограничивающие резисторы, реле и схема управления (рисунок 6). В момент включения контакты реле разомкнуты, и входной ток выпрямительных устройств протекает через резистор с сопротивлением R. Через некоторое время, определяемое схемой управления, на обмотку реле подается напряжение, и его контакты замыкают токоограничивающий резистор, подключая выпрямительные устройства непосредственно к сети.
Рис. 6. Структурная схема ограничителей ICL
Время срабатывания реле определяется схемой управления и составляет 300 мс для моделей ICL-16R/L и 150 мс для ICL-28R/L (таблица 4), что равно, соответственно, 15 и 7,5 периодам изменения напряжения сети с частотой 50 Гц. Этого времени вполне достаточного для заряда конденсаторов входных фильтров, поскольку в большинстве случаев напряжение на них достигает необходимой величины в течение 1…3 периодов (20…60 мс).
Таблица 4. Основные технические характеристики ограничителей ICL
Источник