Способы очистки запыленного воздуха

Оборудование и аппараты для очистки газов, выбросов и улавливания пыли

Большая часть производственных процессов предполагает дробление, измельчение и транспортировку сыпучих материалов, конденсацию, сгорание, шлифовку или другие технологические операции. При этом некоторое количество сырья превращается в пыль — твердые частицы различных фракций или аэрозоли диаметром менее 0,1 мм. По происхождению выбросы бывают неорганическими, органическими, животного происхождения, искусственными или смешанными.

Виды промышленной пыли

С учетом механизма получения мельчайших частиц различают 4 класса производственных пылей:

  1. Механические — образующиеся при измельчении сухих материалов, шлифовке, дроблении или других технологических операциях. Это может быть, например, металлическая крошка или цементная пыль, древесная стружка, различные виды других выбросов.
  2. Летучая зола — несгораемые остатки, присутствующие в дымовых газах во взвешенном состоянии, образуются при сжигании топлива, в котором имеются минеральные примеси.
  3. Возгоны — частички, образующиеся при обильной конденсации паров либо при охлаждении воздуха, проходящего через технологическое оборудование.
  4. Сажа — производственные выбросы в виде твердого высокодисперсного углерода. Являются результатом высокотемпературного разложения или неполноценного сгорания углеводородов.

Основной характеристикой взвешенных частичек считается их диаметр. В категорию «пыль» входят твердые частицы сечением 0,1–850 мкм. Для людей, животных или среды более опасна крошка 0,5–5,0 мкм.

Оборудование для пылеочистки

С учетом технологии улавливания взвешенных частиц, аппараты для очистки газов от пыли классифицируют на 4 категории:

  • Сухие. Пылеуловители механического типа, в которых очистка газа от примесей происходит на основе действия центробежных сил, инерции или гравитации.
  • Мокрые. Аппараты, улавливающие пыли с помощью осаждения ее частиц при смешивании с водой. Другое название — скрубберы.
  • Пористые или тканевые. Системы пылеочистки с использованием пористых фильтров (сеток) из различных материалов, ячейки которых задерживают частички пыли.
  • Электрофильтры. Агрегаты для очистки газа путем ионизации молекул твердых частиц, находящихся в газообразной среде.

Сухие пылеуловители

Установки на базе гравитационных или инерционных камер, либо других механизмов для осаждения твердых примесей. Большую часть этой категории составляют различные виды промышленных пылеуловителей — циклонов. Принцип работы аппаратов заключается в том, что поток запыленного воздуха поступает через патрубок в корпус, а внутри емкости создается вихревое движение, направленное вниз к бункеру. Центробежные силы заставляют тяжелые частицы осаждаться на боковых стенках. Потом пыль, захваченная вторичным потоком, направляется в нижнюю часть, а далее в бункер пылесборник. В бункере поток меняет направление на противоположное. В результате крупицы пыли выпадают вниз. Очищенный воздух отводится через выпускной патрубок.

Эффективность аппаратов циклонного типа

Циклоны результативны для очистки загрязненного воздуха от крупных примесей в пределах 10 мкм. Оптимальная скорость вращающегося потока 5–20 м/с. С учетом варианта исполнения различают прямоточные, циклические или конические аппараты. Результативность улавливания пыли в равной степени прямо пропорциональна скорости перемещения воздуха и обратно пропорциональна — сечению корпуса. Поэтому циклонный аппарат меньшим диаметром и с низкой скоростью более эффективен по сравнению с крупными агрегатами большого сечения или высокой динамикой запыленного воздуха. Плюс к этому чрезмерное увеличение скорости приводит к резкому росту гидравлического сопротивления.
С учетом размеров твердых пылевых частиц эффективность обеспыливания агрегатов циклонного типа следующая:

  • 30–40 мкм — до 98%;
  • 8–12 мкм — до 80%;
  • 4–5 мкм — до 60%.

Подобные промышленные установки обеспечивает очистку от нескольких сотен м3 до десятков тысяч кубометров воздуха. В числе преимуществ циклонов простая компоновка без движущихся деталей и относительно небольшие габариты. Недостатки: большой расход энергии для формирования вращающегося потока, быстрый износ конструктивных элементов под абразивным воздействием твердых частиц.

Когда требуется очистка выбросов от пылей в больших объемах, используются несколько циклонов одновременно. Сначала запыленный поток подается по общему коллектору к аппаратам, скомпонованным в общую группу — батарею. Потом воздух распределяется на каждый агрегат отдельно. Такое решение дает возможность повысить производительность очистного оборудования без увеличения диаметра циклонов или снижения эффективности улавливания твердых примесей. Подобрать циклон в нашем каталоге по параметрам.

Пылеосадительные камеры

Простейшими представителями этой категории являются промышленные пылеосадительные камеры. Благодаря увеличению сечения скорость потока на этом участке воздуховода резко снижается. Под действием гравитации твердые крупинки пыли выпадают вниз. Такие камеры чаще используют на производстве для предварительной (грубой) очистки запыленных сред от крупных примесей.

Результативность улавливания частиц осадительными аппаратами такого типа зависит от продолжительности движения потока внутри корпуса, что определяется объемом камеры и скоростью потока. Чем больше времени запыленный воздух находится внутри пылеосадительной камеры и чем большее расстояние проходят пылевые частицы, тем эффективнее пылеочистка.

Другие виды

Наряду с циклонами и инерционными пылеосадительными камерами существуют и другие виды «сухих» агрегатов для очистки газообразных сред от твердых примесей. В их числе пылеуловители радиального, вихревого или ротационного типов. При аналогичном принципе работы у них различные способы подачи запыленного потока и методы пылеулавливания.

Наиболее результативной в категории сухих пылеуловителей является промышленная установка ротационного типа. Основным элементом ее конструкции выступает вентиляционное колесо. Вращаясь, оно создает мощные центробежные силы. В результате твердые крупинки отбрасываются в стороны и оседают на стенках трубы. Затем они попадают в пылесборник. Чистый поток отводится через патрубок наружу. Эффективность ротационных агрегатов 95–97%.

Пылеуловители мокрого типа

Принцип работы установок этой категории основан на осаждении твердых пылевых частиц на поверхность жидкости под действием инерции. С учетом варианта исполнения различают несколько видов мокрых агрегатов:

  • Форсуночные скрубберы,
  • Скрубберы Вентури,
  • Насадочный скруббер,
  • Ударно-инерционные,
  • другие.
Читайте также:  Числовой способ задания логической функции заданной таблицей истинности

Форсуночные скрубберы

Наиболее востребованы системы очистки от пыли форсуночного типа, изготовленные в виде колонны с круглым сечением. Внутри камеры круглого сечения запыленная среда контактирует с водой. Высота агрегата более чем в 2,5 раза больше диаметра. Подача воды реализуется с помощью форсунок. Результативное улавливание пылевых примесей обеспечивается при удельном расходе от 0,5 до 8 литров воды на кубометр газа.

Скрубберы Вентури

Аппараты Вентури считаются наиболее эффективными в своей категории. Запыленный поток воздуха поступает со скоростью 10–20 м/с по патрубку в аппарат с конфузором — сужением. Туда также впрыскивается через форсунки чистая вода. Скорость перемещения газа в данной узкой части скруббера вырастает до 150 м/с, благодаря чему пылевые частицы осаждаются на поверхности капель воды. В расширяющейся части скорость потока снова падает менее 20 м/с. Затем воздух подается в камеру, где под действием гравитации капли воды смешанные с пылью осаждаются. Очищенный газ выводится через патрубки, а шлам скапливается внизу конструкции.
Максимальная эффективность пылеулавливания скрубберов этой группы 97–98% достигается при расходе 0,4–0,6 литров влаги на кубометр воздуха.

Другие скрубберы

Высокая результативность мокрых пылеуловителей насадочного типа (90%) достигается благодаря использованию особых насадок, установленных под уклоном. Хорошую эффективность очистки также обеспечивают ударно-инерционные установки. Контакт запыленного газа с жидкостью в них происходит в процессе ударов потоков воздуха о поверхность воды. В последующем смесь пропускается через многочисленные каналы различного сечения и конфигурации или сразу поступает в сепаратор.

Наиболее простыми и надежными считаются мокрые аппараты — промывные башни. Их камеры заполняются различными насадками. Это стекловолоконная ткань, кольца Рашига, другие материалы. Запыленная газовая смесь поступает через нижние распыляющие сопла одновременно с чистой водой. Если в воздухе присутствуют плохо смачиваемые виды пыли, используется жидкость с добавлением ПАВ — поверхностно-активных веществ. Средний расход энергии для очистки запыленного воздуха в пределах 2 кВт/ч на 1 тысячу м3 газа.

Преимущества скрубберов

  • Повышенная эффективность. Малогабаритные агрегаты улавливают частицы пыли до 0,1 мкм.
  • Простота компоновки и небольшая цена.
  • Агрегаты используются для фильтрации влажных сред, среды с повышенной температурой, опасностью воспламенения либо взрыва как загрязненных газов, так и уловленных отходов.

Недостатки

  • Существенным минусом применения жидких пылеуловителей является шлам — илистый осадок, который необходимо утилизировать, очищать.
  • В процессе очистки требуются дополнительные расходы на обработку стоков и другие операции, что влияет на себестоимость очистных работ.
  • При обработке определенных газов есть вероятность кислотной либо щелочной коррозии.
  • Чистый, но влажный воздух необходимо осушить, чтобы избежать трудностей с рассеиванием через воздуховоды заводской вентиляции.
  • При использовании ПАВ вода загрязняется примесями, вредоносными для водоемов.

Пористые (тканевые) фильтры

Принцип работы пористых фильтров состоит в пропускании потоков запыленных газов через материал, имеющий перегородки с небольшими зазорами. Твердые пылинки, диаметром больше сечения отверстий, улавливаются, а очищенный воздух движется дальше.

Виды перегородок

Пористые фильтры комплектуются различными видами перегородок:

  • Слоистые. Наиболее простая и дешевая система из одного или нескольких слоев гальки либо другого зернистого материала. Эффективность улавливания механической пыли до 99%.
  • Гибкие. Текстиль, пенополиуретаны, войлок, другие материалы эффективны для тонкой очистки. Отличаются низкой прочностью и невысокой термостойкостью.
  • Полужесткие. Вязаные сетки или прессованные спирали из стальной, медной, бронзовой или другой проволоки. Характеризуются повышенной стойкостью к агрессивным средам и высокой температуре.
  • Жесткие. Рукавные фильтры на основе керамики, металла, стекловолокна либо иных термостойких нетканых материалов. Используются для пылеочистки кислотных, горючих, абразивных газов и др. Выбрать и купить рукавные фильтры можно у нас в каталоге.

Типовая конструкция пористого фильтра выполнена в виде металлической камеры, внутри которой несколько вертикальных перемычек, образующих отсеки. В данных отсеках смонтированы фильтровальные рукава. В нижней части фильтра находится бункер с механизмом выгрузки отходов.

Размеры пор тканевых перегородок 100–200 мкм. Остатки загрязнений газов после пористых фильтров не превышают 10–50 мг/м3. Эффективность пылеочистки частиц от 0,5 мкм — 99%.

Электрофильтры

Улавливание пыли путем ионизации ее молекул. Воздействуя разрядами, коронирующие электроды заряжают молекулы пыли. В итоге ионы накапливаются на поверхностях пылевых частиц. Под влиянием электрического поля пыль притягивается к поверхностям осадительных электродов.

Заряжаются пылинки коронирующими разрядами двумя способами: в результате диффузии и путем бомбардировок ионами, которые движутся вдоль силовых линий. Первый вариант эффективен для частиц до 0,2 мкм. Второй — подходит для пыли диаметром от 0,5 мкм. Для пылинок 0,2–0,5 мкм результативны оба способы. Заряд частиц до 0,2 мкм пропорционален их сечению. Для жестких частиц от 0,5 мкм величина напряжения пропорциональна квадрату их сечения.

Виды электрофильтров

С учетом технологии отвода пыли, накапливаемой на электродах, фильтрующие агрегаты делятся на два виды:

  1. Сухие. Удаление твердых частиц путем встряхивания и последующего удаления пыли. Для нормальной работы установок поддерживается температура не ниже точки росы, чтобы предотвратить увлажнение и конденсат на корпусе, вызывающие коррозию и налипание.
  2. Мокрые. Пыль смывается орошающей водой. Температура запыленного воздуха не должна быть ниже точки росы. Допускается использование для очистки тумана или других газообразных сред повышенной влажности. Промывка электродов при этом не проводится. Влажные частицы с грязью сами стекают вниз.

Особенности

Производительные электрофильтры рассчитаны на пылеочистку больших объемов воздуха температурой до +450 0С. Агрегаты эффективны для улавливания крошки 0,01–100 мкм. При этом расход электроэнергии на обработку 1 тысячи кубометров газа 0,36–1,8 МДж.

Результативность пылеочистки определяется типом твердых примесей, видом очищаемого газа, скоростью, размерами электрофильтров, другими параметрами. Максимальная эффективность улавливания достигается путем снижения динамики перемещения воздуха при одновременном повышении напряжения поля. Расходы на эксплуатацию и обслуживание аналогичных агрегатов, не превышают 3% общих затрат.

Читайте также:  Растворы способы выражения концентрации растворов эквивалент

Наиболее эффективными в плане пылеочистки являются комбинированные установки. Лучшие результаты показывают системы трехступенчатой очистки. Сначала выполняется грубая обработка запыленного воздуха с помощью циклонов. Затем тонкая — с использованием скрубберов. В завершение проводится финальная доочистка с применением электрофильтров.

Источник

МЕТОДЫ ОЧИСТКИ ВОЗДУХА ОТ ПЫЛИ

Для очистки воздуха от пыли применяют пылеуловители и фильтры. К фильтрам относятся устройства, в которых отделение пылевых частиц от воздуха производится путем фильтрации через пористые материалы. Аппараты, основанные на иных принципах пылеотделения, принято называть пылеуловителями.

В зависимости от природы сил, действующих на взвешенные в газе пылевые частицы для их отделения от газового потока, используют следующие типы пылеулавливающих аппаратов:

сухие механические пылеуловители (взвешенные частицы отделяются от газа при помощи внешней механической силы);

мокрые пылеуловители (взвешенные частицы отделяются от газа путем промывки его жидкостью, захватывающей эти частицы);

электрические пылеуловители (частицы пыли отделяются от газового потока под действием электрических сил);

фильтры (пористые перегородки или слои материала, задерживающие пылевые частицы при пропускании через них запыленного воздуха);

комбинированные пылеуловители (используются одновременно различные принципы очистки).

По функциональному назначению пылеулавливающее оборудование подразделяют на два вида: 1) для очистки приточного воздуха в системах вентиляции и кондиционирования; 2) для очистки воздуха и газов, выбрасываемых в атмосферу системами промышленной вентиляции.

Основными технико-экономическими показателями, характеризующими промышленную эксплуатацию пылеуловителей и фильтров, являются:

производительность (или пропускная способность аппарата), определяемая объемом воздуха, который может быть очищен от пыли за единицу времени (м 3 /ч, м 3 /с);

аэродинамическое сопротивление аппарата прохождению через него очищаемого воздуха (Па). Оно определяется разностью полных давлений на входе в аппарат и выходе из него, т. е. р = рвх — рвых;

общий коэффициент очистки или общая эффективность пылеулавливания, определяемая отношением массы пыли, уловленной аппаратом Gул, к массе пыли, поступившей в него с загрязненным воздухом GBX и выражаемый в относительных единицах или в %:

фракционный коэффициент очистки, т. е. эффективность пылеулавливания аппарата по отношению к различным по крупности фракциям (в долях единицы или в %)

η = [Фвх – Фвых(1 – η)]/Фвх

где Фвх, Фвых — содержание фракции пыли в воздухе соответственно на входе и выходе из пылеуловителя, %.

Стоимость очистки воздуха (руб. на 1000 м 3 очищаемого воздуха).

Наиболее простыми по устройству и эксплуатации аппаратами являются пылеосадительные камеры, в которых отделение частиц пыли от воздуха происходит под действием силы тяжести при прохождении воздуха через камеры. Эти устройства применяют для грубой очистки, их эффективность пылеулавливния составляет 50. 60 %. Скорость движения воздуха в камере выбирается из условия обеспечения ламинарного движения и обычно составляет 0,2. 0,8 м/с. Аэродинамическое сопротивление камер невысоко и равно 80. 100 Па. С целью повышения эффективности пылеулавливания камер они иногда разделяются по высоте полками, которые могут периодически встряхиваться для очистки от оседающей пыли. Для этой же цели применяют пылеосадительные камеры лабиринтного типа.

Центробежные пылеотделители — циклоны — находят более широкое применение, так как при сравнительно простой конструкции обеспечивают высокую степень обеспыливания воздуха (80. 90%). Наиболее известные типы отечественных циклонов приведены на рис. 7.1.

Циклон состоит из цилиндрического корпуса, к которому тангенциально подведен входной патрубок; нижней конической части и выхлопного патрубка, размещаемого внутри корпуса соосно с ним. Входя в циклон со скоростью 1&. 20 м/с, запыленный воздух приобретает вращательное движение и опускается вниз. При этом частицы пыли под действием сил инерции отбрасываются к стенкам аппарата и, скользя по ним вниз, попадают в бункер. Очищенный поток воздуха поворачивает вверх и через выхлопную трубу выходит из циклона.

Эффективность пылеулавливания возрастает с увеличением скорости входа воздуха в циклон, однако при слишком большой скорости возрастает турбулизация воздушной среды и эффективность циклона падает. Максимальную скорость воздуха принимают обычно не более 20 м/с. На эффективность этих аппаратов влияет и их диаметр: с его увеличением эффективность падает, поэтому диаметр циклонов принимается не более 1 м.

Гидравлическое сопротивление циклонов колеблется в пределах 500. 1100 Па. Оно зависит от конструкции аппарата и скорости воздуха на входе в него.

Рис. 7.1. Схемы циклонов основных типов:

а — НИИОГАЗ ЦН-15; б — СИОТ; в — ВЦНИИОТ; г — Гипродрев;

1 — входной патрубок; 2—выхлопная труба; 3—цилиндрический корпус; 4—коническая часть; 5—бункер; 6—улитка на выходе; 7—отверстие выхлопного патрубка; 8—коническая вставка; 9—перегородки

Конструкции современных циклонов довольно разнообразны, что объясняется многообразием условий их рационального применения. Наибольшее распространение получили циклоны типа НИИОГАЗ (несколько модификаций), СИОТ, ВЦНИИОТ, ЛИОТ, Гипродрева (см. рис. 7.1). Они различаются конструктивным оформлением, эффективностью пылезадержания и гидравлическим сопротивлением. Каждый циклон имеет свою рациональную область применения.

Циклон НИИОГАЗ отличается удлиненной конической частью и имеет малое гидравлическое сопротивление. Применяется он для улавливания неслипающихся и неволокнистых пылей.

Циклон СИОТ имеет корпус в виде конуса без цилиндрической части с входной трубой треугольного поперечного сечения. Используется он в тех случаях, когда имеются ограничения габаритов по высоте.

Циклон ВЦНИИОТ рекомендуется применять при улавливании абразивных пылей, так как он отличается малой изнашиваемостью стенок благодаря наличию обратно расположенного конуса внизу аппарата. Гидравлическое сопротивление его несколько выше, чем у циклонов других типов. Циклон ВЦНИИОТ можно использовать для улавливания волокнистых пылей (нижний внутренний конус в этом случае снимается).

Циклон ЛИОТ имеет развитую цилиндрическую часть и применяется для улавливания сухой неслипающейся пыли.

Циклон Гипродрева отличается бочкообразной формой, имеет малое гидравлическое сопротивление и используется в основном для улавливания отходов деревообработки.

Окончательный выбор того или иного типа циклона должен определяться по технико-экономическим показателям. В тех случаях, когда требуется очищать большие объемы воздуха, применяют групповые циклоны. В них аппараты подсоединяются параллельно входными патрубками к общему трубопроводу и устанавливаются на один бункер больших размеров. Необходимым условием эффективной работы циклонов в этом случае является исключение возможности перетекания воздуха из одного циклона в другой.

Читайте также:  Способы измерения национального богатства

Рукавные фильтры для улавливания сухих неслипающихся пылей нашли широкое применение в промышленности (рис. 7.2). Основными рабочими элементами этих устройств являются матерчатые рукава, подвешиваемые к встряхивающему устройству и размещаемые в герметичном металлическом корпусе. Нижние открытые концы рукавов соединены с бункером. Воздух, проходя через ткань рукавов, оставляет на их поверхности пыль и удаляется из корпуса фильтра вентилятором. Накапливаясь на поверхности ткани в виде слоя, пыль сама становится фильтрующей средой и увеличивает эффективность пылезадержания фильтра. Очистка ткани рукавов от осевшей пыли производится путем их встряхивания, для чего устанавливается автоматически действующий встряхивающий меха низм. Во многих типах фильтров встряхивание рукавов сочетается с обратной их продувкой с целью лучшей очистки от пыли. Фильтры выполняются многосекционными. При отключении одной из секций для очистки рукавов остальные продолжают работать. Фильтры бывают всасывающего и напорного типов.

Рис. 7.2. Схема рукавного фильтра:

1 — входной патрубок; 2— рукав; 3— подвеска рукавов; 4— встряхивающий механизм;

5— выходной патрубок; 6 — бункер

Эффективность пылезадержания рукавных фильтров составляет 90. 99 %. Воздушная нагрузка на ткань принимается в пределах 50. 80 м 3 /(м 2 ·ч). Гидравлическое сопротивление фильтра в зависимости от степени запыления рукавов колеблется в пределах 1. 2.5 кПа.

В последние годы разработаны фильтры, в которых рукава выполнены из стеклоткани или пористых керамических материалов. Очистка фильтрующих элементов в них производится сжатым воздухом. Такие фильтры можно применять для очистки высокотемпературных газов, отсасываемых от технологического оборудования. Из выпускаемых промышленностью рукавных фильтров наибольшее распространение получили фильтры типов ФВК, ФВВ, ФРМ, ФТНС и др.

Электрические фильтры (рис. 7.3) находят широкое применение на предприятиях строительной индустрии для очистки воздуха и промышленных газов от пыли. В этих аппаратах отделение пылевых частиц от воздуха производится под воздействием статического электрического поля высокой напряженности. В металлическом корпусе, стенки которых заземлены и являются осадительными электродами, размещены коронирующие электроды, соединенные с источником постоянного тока. Напряжение выпрямленного тока составляет 30. 100 кВ.

Вокруг отрицательно заряженных электродов образуется электрическое поле. Проходящий через электрофильтр запыленный газ ионизируется, вследствие чего приобретают отрицательные заряды и пылевые частицы. Последние начинают перемещаться к стенкам фильтра, и, оседая на них, образуют плотный слой. Очистка осадительных электродов производится путем их остукивания или вибрации, а иногда путем смыва водой.

Рис. 7.3. Схема электрофильтра:

1 — входной патрубок; 2— корпус электрофильтра (осадительный электрод); 3—коронирующий электрод;

4— изоляторы; 5— выходной патрубок; 6— высоковольтный выпрямитель тока; 7— бункер

Эффективность пылеулавливания электрофильтров высокая, она достигает 99,9 %. Причем улавливаются частицы любых размеров, включая субмикронные при их высоких концентрациях в газах, достигающих 50 г/м 3 . Преимуществами этих аппаратов являются низкое гидравлическое сопротивление 100. 150 Па, экономичность эксплуатации, возможность очищать газы при их высоких температурах (до450°С).

Для различных условий применения промышленностью выпускаются разные типы электрофильтров: УГ, ЭГА, УТТ, ОГП, УБ, УВВ, ПГ, ДМ и др.

Пылеуловители мокрого типа являются аппаратами глубокой очистки и отличаются высокой эффективностью пылеулавливания. Их применение целесообразно в том случае, когда улавливаемая пыль хорошо смачивается водой, не цементируется и не образует твердых, трудно разрушаемых отложений.

Из этого класса аппаратов наиболее часто применяют циклон с водяной пленкой ЛИОТ (рис. 7.4). Он имеет вертикальный цилиндрический корпус, в нижнюю часть которого тангенциально подводится очищаемый воздух. Последний закручивается и, вращаясь, поднимается в верхнюю часть аппарата, откуда отводится в атмосферу через выхлопной патрубок.

Рис. 7.4. Циклон с водяной пленкой:

1 — входной патрубок; 2 — корпус; 3 — выходной патрубок; 4 — устройство для подачи воды

При вращении потока из него под действием центробежных сил выделяются пылевые частицы, которые удаляются со стенок аппарата стекающей сверху водой. Последняя подается на стенки аппарата через водоподающее кольцо и несколько тангенциально расположенных трубок и стекает по стенкам аппарата в виде сплошной водяной пленки. Образующийся шлам собирается в бункере.

Эффективность пылеулавливания циклонов с водяной пленкой составляет 99,0. 99,5 %, потери давления в аппарате равны 400. 800 Па. При очистке от пыли агрессивных газов, разрушающих металлические стенки аппарата, последние с внутренней стороны армируются кислотостойкими покрытиями.

Высокими эксплуатационными показателями отличаются также пенные пылеуловители (рис. 7.5). Аппараты этого типа имеют цилиндрический металлический корпус, внутри которого горизонтально размещена решетка. Вода подается на решетку, через которую снизу пропускается очищаемый воздух. При этом на решетке образуется слой пены, высота которого зависит от высоты сливной перегородки (порога). Обычно она составляет 80. 100 мм. С целью снижения капельного уноса влаги в верхней части аппарата размещается каплеуловитель, выполненный в виде решетки с лабиринтными каналами.

Рис. 7.5. Пенный пылеуловитель:

1 — приемная коробка; 2— корпус; 3— решетка; 4— сливная перегородка (порог); 5—сливная коробка

1. Назовите основные источники и свойства пылей, выделяющихся на строительных площадках. 2. Каковы методы контроля запыленности воздуха? 3. Перечислите общие и индивидуальные средства защиты работающих от пыли. 4. Назовите основные виды пылеуловителей и фильтров, применяемых для очистки воздуха. 5. Каковы технико-экономические показатели, применяемые при оценке пылеуловителей и фильтров? 6. Объясните принцип действия и укажите области применения пылеосадительных камер и циклонов. 7. Как устроены и работают рукавные фильтры? 8. Объясните принцип действия электрических фильтров. 9. Как устроены пылеуловители мокрого типа и в каких случаях они применяются? 10. Объясните принцип действия пенных пылеуловителей.

Источник

Оцените статью
Разные способы