Очистки загрязненных почв, от тяжелых металлов
ОЧИСТКИ ЗАГРЯЗНЕННЫХ ПОЧВ, ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ
Загрязнение почв тяжёлыми металлами (ТМ) представляет важную экологическую проблему. Возможно осаждение их в виде труднорастворимых осадков, вымывание за пределы почвенного профиля, извлечение из почв растениями и микроорганизмами, сорбция минералами с высокой ёмкостью катионного обмена и смесью сорбентов. Однако сорбция тяжёлых металлов сорбентами и перевод их в труднорастворимые осадки приводят к созданию депонирующих сред, т.е. создаются отложенные негативные последствия. Вымывание тяжёлых металлов за пределы почвенного профиля водой малоэффективно в связи со слабой растворимостью осадков ТМ в почвах и значительной прочностью их связи в почвенном поглощающем комплексе. Извлечение тяжёлых металлов из почв растениями и микроорганизмами, как правило, невелико по сравнению с их валовым содержанием, и находится на пределе точности определений. Вышеуказанные недостатки существующих методов очистки почв от ТМ определяют необходимость поиска новых методов интоксикации почв [1].
В понятие ТМ включают все металлы, за исключением щелочных и щелочноземельных элементов. ТМ — группа химических элементов плотностью более 5 г / см3 с относительной атомной массой более 40 а. е. м.
По степени опасности ТМ подразделяют на три группы:
1) высоко опасные: Hg, As, Se, Сd, РЬ, Zn; 2) умеренно опасные: Сг, Со, Мо, Ni, Си, Sb и 3) малоопасные: V, W, Мп, Sr. По свойствам ионов ТМ в воде данные элементы подразделяются на металлы, изменяющие органолептические свойства воды, такие как цвет, запах, вкус (Те, Мп, Zn) и токсикологические (Al, Cd, Си, Мо, Сг). Также существует классификация ТМ по степени подвижности в почвенных экосистемах: первый класс включают Hg, As, Se, Сd, Pb, Zn и второй класс Cr, Со, Мо, Ni, Cu, Sb. Оба класса относятся к металлам первичного рассеивания (такого, как вулканическая деятельность). К третьему классу относятся металлы вторичного рассеивания: V, W, Мп, Sr [2].
Методы борьбы с загрязнением почвы тяжелыми металлами могут быть физическими, химическими и биологическими.
Среди них можно выделить следующие способы:
Увеличение кислотности почвы повышает возможность загрязнения ее тяжелыми металлами. Поэтому внесение органических веществ и глины, известкование помогают в какой — то мере в борьбе с загрязнением;
Посев, скашивание и удаление с поверхности почвы некоторых растений, например клевера, существенно снижает концентрацию тяжелых металлов в почве. К тому же данный способ является совершенно экологичным [3];
Очистка методом промывки почвы растворами из ПАВ или растворами содержащие сильные окислители — активный кислород, хлорсодержащие соединения, а также щелочные растворы. При выщелачивании содержание тяжелых металлов (Zn, Pb, Cd, Ni, Cu, As) снижается на 85 — 95 % ;
Электрофизический метод очистки — используется для удаления из почвы нефтепродуктов, фенолов и хлорсодержащих углеводородов. В основе метода лежит эффект электролиза воды при прохождении электрического тока через почву;
Термический метод очистки — метод применяется для освобождения почвы от нефтепродуктов, масел, бензина, от некоторых цветных металлов, от галогеносодержащих и органических соединений. Восстановить свойства почвы после такого воздействия можно добавлением компоста или минеральных удобрений [4];
Проведение детоксикации подземных вод, ее откачивание и очистка;
Прогнозирование и устранение миграции растворимой формы тяжелых металлов;
В некоторых особо тяжелых случаях требуется полное снятие почвенного слоя и замена его новым.
Опасность тяжелых металлов заключается в том, что они плохо выводятся из организма, накапливаются в нем. Они могут образовывать очень токсичные соединения, легко переходят из одной среды в другую, не разлагаются. При этом они вызывают тяжелейшие заболевания, приводящие часто к необратимым последствиям.
Список использованной литературы:
Алексеев Ю. В. Тяжелые металлы в почвах и растениях / Ю. В. Алексеев. Л.: Агропромиздат, 1987.[141 с].
Левин С. В. Тяжелые металлы как фактор антропогенного воздействия на почвенную микробиоту / С. В. Левин, В. С. Гузев, И. В. Асеева и др. // Микроорганизмы и охрана почв / Под ред. Д. Г. Звягинцева. М.: Изд — во МГУ, 1989.[5, с. 47].
Химия окружающей среды / под ред. О. М. Бокриса. М.: Химия, 1982. [672 с].
Кабата — Пендиас А., Пендиас Х. Микроэлементы в почвах и растениях. М., 1989. 377 с.
Источник
Очистка почвы от загрязнений
Может случиться, что земля на загородном участке будет сильно загрязнена прорвавшимися из септика сточными водами, удобрениями, смытыми весной с полей, дизтопливом и т.д. Неочищенная почва на долгое время станет источником постоянного токсического заражения всего, что с ней соприкасается. Первое, что страдает от загрязнений в грунте — садовые и декоративные растения, а также неглубокие источники воды, которыми Вы пользуетесь. Иногда такое заражение ничем себя внешне не проявляет и действует незаметно. Некоторые вредные вещества способны накапливаться в организме и лишь по прошествии времени оказывают негативное воздействие на здоровье.
Если существуют сомнения в химической и бактериологической чистоте загородного участка, надо сделать лабораторный анализ почвы, овощей и фруктов, собираемых с дачных плантаций, и воды. Воду необходимо проверить, если она попадает в дом из мелких и средних по глубине источников — колодцев, песчаных скважин. Чрезмерное количество некоторых химических соединений или уровень кислотности почвы может отрицательно влиять на сохранность бетонных, металлических и прочих подземных конструкций.
Конечно, почва как часть биосферы стремиться естественным образом нейтрализовать чужеродные для нее вещества и соединения. Но этот процесс занимает очень много времени. При слишком высокой концентрации загрязнений механизм естественного природного очищения и восстановления может не работать.
экспресс-анализ почвы на загрязнения
Существуют эффективные технологии по очистке хозяйственно-бытовых стоков. Но как вернуть верхнему слою почвы его плодородные свойства и экологическую чистоту? Рассмотрим современные методы восстановления естественных природных качеств грунта.
Способы очистки почвы от загрязнений
По принципу действия методы очистки почвы делятся на три типа:
- химические
- физические
- биологические
Не все из перечисленных способов из-за своей радикальности подходят для восстановления экологии загородного участка и применяются для решения масштабных промышленных задач. Но возможны ситуации, когда лишь таким способом можно очистить землю от посторонних веществ — например, случайно пролили бочку солярки для котла отопления — и затем вернуть ее к жизни с помощью рекультивации. Часть методов производят сложное воздействие на почву и могут быть отнесены сразу к двум типам. Химический метод очистки почвыхимическая очистка почвы При химической очистке почвы от загрязнений используется метод промывки. Делаются специальные растворы из поверхностно-активных веществ или растворы, содержащие сильные окислители — активный кислород, хлорсодержащие соединения, а также щелочные растворы. Выщелачивание осуществляется с помощью 2%-ого раствора соляной кислоты. При выщелачивании содержание тяжелых металлов (цинк, свинец, кадмий, никель, медь, мышьяк) снижается на 85-95%. Так как при промывке растворы попадает в почву, непосредственно проникая во все поры между частицами, эффективность данного метода очень высокая. После очистки промывкой следует сделать рекультивацию почвы. Недостатки метода: нужна очистка почвы от соединений хлора. Метод не подходит для очистки большого объема грунта. Физико-химические методы очистки почвы Самый простой физический метод восстановления почвы — снять верхний слой и заменить его чистым, незараженным. Но не всегда есть возможность найти достаточное количество свободной и плодородной почвы. Электрофизический метод очистки — используется для удаления из почвы нефтепродуктов, фенолов и хлорсодержащих углеводородов. В основе метода лежит эффект электролиза воды при прохождении электрического тока через почву. Сложные загрязняющие соединения при таком воздействии активно окисляются и распадаются на менее вредные простые составляющие. Метод электрофизической очистки позволяет очищать почву от опасных соединений на основе свинца, ртути, кадмия, мышьяка и т.д. схема электрохимической очистки почвы (метод электролиза) В зависимости от условий в грунте и использованного дополнительного оборудования кроме электролиза могут быть использованы другие варианты метода: электрокоагуляция, электрохимическое окисление, электрофлотация, электроосмос, электрокинетический метод и некоторые другие. Практически все перечисленные способы электроочистки почвы технически сложны и дороги. Термический метод очистки почвы Термический метод очистки можно отнести к физическому. В зависимости от типа загрязнений нагрев может производиться как на воздухе, так и в вакууме — в специальных герметичных установках. Метод применяется для освобождения почвы от нефтепродуктов, масел, бензина, от некоторых цветных металлов, от галогеносодержащих и органических соединений. Углеводороды выгорают при нагреве материала до + 800 С. Восстановить свойства почвы после такого воздействия можно добавлением компоста или минеральных удобрений. Существуют не только стационарные, но и передвижные термические установки на автомобильном шасси. Во всем мире ежегодно термическим методом очищаются миллионы тонн почвы. термическая очистка почвы Очень сильный нагрев до сплавления частиц почвы проводится с помощью электродов, опускаемых в землю. Данный электро-термический метод используется для связывания в невымываемые грунтовыми водами формы таких опасных загрязнителей, как тяжелые металлы и радионуклиды. Биологические методы очистки почвы Фиторемедиация — комплекс методов использования растений для очистки сточных вод, почвы и атмосферы от различных типов загрязнений. В свою очередь фиторемедиация является составной частью еще более широкой методики биоремедиации. Рассмотрим фито-методы для очистки почвы. Метод фитоэкстракции — на загрязненном участке высаживаются специально отобранные растения. В силу своих биологических особенностей некоторые виды флоры способны поглощать и накапливать в корнях, стеблях и листьях соединения меди, цинка, кобальта, никеля, свинца, хрома, тем самым снижая содержание этих элементов в земле. Для более полного восстановления участка почвы необходимо обеспечить несколько циклов произрастания данных растительных видов. По завершении процесса фитоэкстракции все растения необходимо собрать и сжечь. При этом продукты сгорания следует захоронить на специальном полигоне для отходов, так как в пепле сохранится высокое содержание вредных элементов. Метод фитостабилизации немного отличается от фитоэкстракции. Используемые растения не поглощают, но осаждают в почве рядом с корнями опасные химические соединения, почвенные бактерии способны переработать некоторые из них в менее опасные. В результате соединения переводятся в неактивную и мало подвижную форму, чем снижается риск их дальнейшего распространения. ярутка полевая — поглощает из почвы тяжелые металлы Кроме определенных растений, естественным образом произрастающих в природе и пригодных для решения задач очистки почвы и воды, производятся опыты по созданию более эффективных генномодифицированных растений с улучшенными характеристиками. Все биологические методы очистки действенны только при невысоком и среднем уровне загрязнений почвы. Процесс биологической очистки воды и почвы достаточно медленный, но естественный и наименее затратный. Методы биостимуляции и биодеструкции — особые организмы разрушают проникшие в почву загрязнения. Методы используются в основном для нейтрализации различных нефтепродуктов, жиров и масел. Микроорганизмы-деструкторы либо просто добавляются в почву, либо в почве создаются условия — вносятся специальные добавки для ускоренного размножения эндогенных, то есть уже живущих там аэробных бактерий, способных расщеплять углеводороды. На рост бактерий влияет влажность, уровень аэрации и температура почвы, поэтому эффективность данного способа зависит от многих факторов. Лучший метод очистки почвы В сложных случаях, когда в почву попали разные по типу загрязнения, или новое загрязнение наложилось на неизвестное старое, наиболее эффективным будет последовательное использование нескольких способов очистки. Как мы уже сказали выше, вряд ли большинство из перечисленных в статье вариантов можно применить на загородном участке. Но некоторые методы вполне доступны и могут улучшить экологическую ситуацию. Это касается наиболее простых с технической точки зрения физических и биологических методов.
Источник
Способ очистки почв от тяжелых металлов
Владельцы патента RU 2365078:
Изобретение относится к области сельского хозяйства. Способ очистки почв от тяжелых металлов включает выращивания растений фитомелиорантов на загрязненных почвах с последующим их удалением. В качестве растения — фитомелиоранта используют сафлор. Семена сафлора высевают в загрязненную почву из расчета 20-22 кг/га, доводят взрослые растения до фазы окончания цветения и начала отмирания нижних листьев, после чего фитомелиорант полностью удаляют из почвы. Обеспечивается полное поглощение ионов тяжелых металлов. 3 табл.
Изобретение относится к сельскому хозяйству и может быть использовано при проведении специальных мероприятиях по снижению содержания в загрязненных почвенных ценозах токсичных концентраций тяжелых металлов с целью восстановления или улучшения агрохимических показателей, необходимых для получения экологически безопасной продукции.
В настоящее время отечественными и зарубежными исследователями ведется поиск растений — гипераккумулянтов, свойства которых позволяют эффективно извлекать тяжелые металлы из загрязненной почвы [1, 3, 4].
В литературных источниках сообщается, что рекультивация грунтов или очистка их от загрязнений с помощью растений является сравнительно новым методом (десять лет), экологическим и прогрессивным. Он позволяет исключить или ограничить перенос тяжелых металлов по цепочке от человека к грунтам и грунтовым водам без ущерба для окружающей среды [5].
В аналоговых работах авторами показано, что в целях фиторемедиации загрязненных почв (очистка при помощи растений) используют следующие растения — аккумулянты: ракитник, редька масличная, амарант и даже дикорастущие растения [1, 3, 4, 5].
Наиболее близким аналогом к изобретению по совокупности основных существенных признаков является способ очистки почв от тяжелых металлов путем выращивания растений — фитомелирантов на загрязненных почвах с последующим их полным удалением из почвы [2] (см. RU 2282508, Кл. A01B 79/02, 27.0.2006).
К недостаткам аналоговой работы следует отнести изучение только одного загрязнителя — цезия, не указан коэффициент биологического накопления загрязнителя по используемым культурам, нет четкого понятия о сроке уборки, поскольку использовались культуры разных групп технологических требований и биологии развития.
Задачей изобретения является улучшение экологического состояния естественных и культурных биогеоценозов за счет снижения содержания токсичных концентраций тяжелых металлов в корнеобитаемом слое почв.
Технический результат — более полное поглощение ионов тяжелых металлов (свинец, кадмий и медь) из почвенного раствора при создании оптимального покрытия растениями сафлора загрязненной площади.
По сущности поставленная задача достигается тем, что на загрязненных почвах возделывают сафлор, семена высевают из расчета 60-80 растений на м 2 (20-22 кг/га) с последующим доведением и полным удалением растений до фазы окончания цветения и начала отмирания нижних листьев.
Предлагаемая норма высева обеспечивает полный охват корневой системой растения по объему загрязненной почвы. При меньшей норме высева охват не полный, а при большей норме снижается резко продуктивность надземной массы и, как следствие, общий вынос тяжелых металлов растениями сафлора.
Пример конкретного выполнения
Опыты проводились на территории очистных сооружений г.Истры.
Проводили весенний посев растений вручную с последующей заделкой граблями.
Пробы почв отбирали до посева и сразу после уборки сафлора.
Уборку проводили, доведя развитие растений до фазы окончания цветения и начала отмирания нижних листьев.
Полученные результаты в ходе выполнения эксперимента в полевых условиях убедительно доказывают, что сафлор может быть отнесен к растениям — гипераккумулянтам тяжелых металлов.
Интересно отметить, что, как правило, при выращивании на загрязненных почвах, даже у гипераккумулянтов, содержание таких металлов, как свинец, кадмий и медь в растительных образцах по надземной части не превышает 1,2; 0,5-1 и 10-12 мг/кг сухой массы соответственно (табл.1).
Таблица 1 | |||
Содержание тяжелых металлов в растительных образцах растений сафлора (мг/кг сух. массы) | |||
РЕЗУЛЬТАТЫ ИСПЫТАНИЙ | |||
Наименование образца (сафлор) | свинец | кадмий | медь |
надземная масса | 3,58 | 6,586 | 34,88 |
корни | 1,36 | 1,087 | 57,83 |
На основании представленных результатов и данных по содержанию тяжелых металлов (подвижная форма) в почве произведен расчет коэффициента биологического накопления (поглощения) (табл.2).
Как известно, если у растений даже по надземной массе коэффициент биологического накопления токсикантов больше единицы, то данный вид может быть отнесен к гипераккумулянтам, в рассматриваемом примере высокий КБНTA достигнут и по корневой части опытных растений.
Таблица 2 | |||
Коэффициент биологического накопления (КБНТМ) тяжелых металлов растениями сафлора | |||
Наименование образца (сафлор) | свинец | кадмий | медь |
КБН надземная масса | 2,13 | 8,25 | 1,22 |
КБН корни | 0,81 | 1,36 | 2,03 |
содержание подвижной фракции в почве, мг/кг | 1,68 | 0,8 | 28,4 |
Анализ биопродуктивности растений в фазу цветения не выявил проявления токсичного влияния загрязненной почвы на рост и развитие сафлора — средняя сухая масса стеблей составила 557 г, корней — 143 г см 2 соответственно. Посев семян проводится вручную из расчета 60-80 растений на 1 кв. м.
При загущенном посеве, свыше 80 раст./м 2 , отмечали снижение продуктивности надземной массы в среднем на 16%, растения отставали в росте, корневая система сафлора имела меньшую массу, видимо при уплотнении посевов у растений сафлора проявляется аллелопатия — взаимное угнетение роста и развития.
Таблица 3 | |||
Содержание тяжелых металлов в почве до и после применения сафлора, мг/кг (полигон Истринских очистных сооружений, 2007-08 г.) | |||
Наименование образца | свинец | кадмии | медь |
Почва без растений | 11,48 | 221 | 160,5 |
сафлор | 10,44 | 1,73 | 154,9 |
ОДКТМ (ориентировочно допустимая концентрация) в почве, мг/кг | 130 | 2,0 | 132 |
Результаты испытании сафлора при использовании в качестве фитомелиоранта убедительно доказывают высокую эффективность аккумулирующей способности растений для снижения содержания тяжелых металлов в корнеобитаемом слое почвы.
Способ очистки включает следующие мероприятия:
— подготовка почвы к посеву;
— посев фитомелиоранта из расчета 60-80 раст./м 2 (20-22 кг/га), глубина заделки семян 4-5 см;
— доводят развитие растений сафлора до фазы окончания цветения и начала отмирания нижних листьев, затем полностью удаляют их из загрязненной почвы.
Предлагаемый способ позволяет существенно повысить эффективность фитосанации, и при установлении авторского права дает основание для разработки ТУ различных схем фитореабилитации загрязненных территорий.
1. Баран С., Кжывы Е. Фиторемедиация почв, загрязненных свинцом и кадмием, при помощи ракитника / Влияние природных и антропогенных факторов на социоэкосистемы, 2003. №2. — С.39-44.
3. Жадько С.В., Дайнеко Н.М. Накопление тяжелых металлов древесными породами улиц г.Гомеля. // Изв. Гомел. гос.ун-та, 2003. №5. — С.77-80.
4. Кудряшова В.И. Аккумуляция ТМ дикорастущими растениями. — Саранск — 2003 г. — С.10, 18, 50, 78.
5. Rakotosson Voahirana. Les metaux lourds et la phytorenediation: l’etat de l’art. // Eau, ind., nuisances. 2003. №260. — C.45-48.
Способ очистки почв от тяжелых металлов путем выращивания растений — фитомелиорантов на загрязненных почвах с последующим их удалением, причем в качестве растения — фитомелиоранта используют сафлор, семена сафлора высевают в загрязненную почву из расчета 20-22 кг/га, доводят взрослые растения до фазы окончания цветения и начала отмирания нижних листьев, после чего фитомелиорант полностью удаляют из почвы.
Источник