Способы очистки от хлорида натрия

Как удалить натрий и хлорид (соль) из скважинной воды?

Соль – широкораспространённое вещество, способное выщелочить грунтовые воды и водные запасы. Когда соль растворяется в воде, она распадается на положительно и отрицательно заряженный натрий и ионы хлорида. Эти ионы настолько распространены, что их можно найти практически во всех образцах воды со всего мира.

Люди часто задаются вопросом – обязательно ли удалять натрий и хлорид из воды. Вероятно, что вода, которую Вы пьете, содержит небольшой процент этих веществ. Бывают случаи, когда это влияет на вкус воды. Или приходится понижать уровень содержания натрия в воде из-за предписанной доктором диеты.

Слишком много – это сколько?

Если Вы обеспокоены тем, что в воде добытой из пробуренной скважины на воду, много натрия и хлорида, то подумайте о том, что в продуктах, которыю Вы употребляете в пищу, этих веществ намного больше. В 1 литре самой чистой воды содержится до 20 миллиграмм натрия и 30 миллиграмм хлорида. В прибрежных зонах эти показатели выше – 75 мг/л натрия и 150 мг/л хлорида. Причина такого повышения концентрации заключается в близости океана и открытых ветров. И это считается довольно низким показателем натрия. Например, в стакане молока содержится 500 мг/л натрия.

Более высокие показатели натрия и хлорида зачастую свидетельствуют о загрязнении воды продуктами человеческой жизнедеятельности, например, соль с дорог, водные смягчители, закапывание мусора, человеческие и животные отходы.

Откуда же берется натрий и хлорид в смонтированных системах водоснабжения в воде добытой из пробуренной скважины?

Один из распространённых источников – дорожная соль, ей посыпают дороги, автомагистрали, лестничные площадки во время гололеда, ледяных штормов и снегопада. Например, в Соединенных Штатах Америки в период с 2005 по 2009 год ежегодно использовалось по 23 миллиона тонн соли для посыпания дорог, тротуаров и автостоянок. Исследования показали, что в городских районах приблизительно 95 процентов хлорида попадает в водоколлекторы. И причина этому – дорожная соль.

Основным источником натрия являются водные смягчители. Во время работы смягчителя вода взаимодействует с ионитами соли и такие загрязняющие вещества, как кальций и магний, заменяются натрием. Таким образом, натрий попадает в питьевую воду. Количество натрия в воде зависит от её жесткости. Чем выше жесткость, тем больше натрия необходимо, чтобы очистить воду.

Есть несколько способов удалить натрий и хлорид из воды в домашних масштабах.

Рассмотрим несколько из них:

Установка обратного осмоса. Система обратного осмоса фильтрует воду через специальную мембрану, которая пропускает только молекулы воды. Натрий и хлорид, таким образом, не попадает в Вашу воду, а смывается в систему сточных вод с небольшим количеством воды. Очищенная вода сохраняется в небольшом резервуаре для дальнейшего использования. Система может быть установлена как локально, например, на раковине в кухне, так и для очистки всей поступающей в дом воды.

Дистилляция. Система дистилляции работает на изменении температуры, чтобы испарить и повторно реконденсировать чистую воду. Неорганические полезные ископаемые, такие как натрий и хлорид, обычно не переходят в конденсированную воду, но некоторые органические загрязнители все же остаются. Эти системы устанавливаются под раковиной или на рабочих поверхностях недалеко от кранов и могут увеличить энергозатраты дома.

Деионизация. Эта система очистки подобна водному умягчителю, только вместо ионитов соли используются иониты кислот и оснований. Это очень эффективная система, но для её работы используются опасные химикаты.

Источник

Как очистить воду от хлоридов

Вода из центрального водоснабжения, а также из скважин и колодцев, не всегда является пригодной для питья по результатам лабораторных исследований. Часто в ней содержатся примеси: механические включения в виде песка, ржавчины, ила, растворенные минералы, ионы марганца, кальция, железа, а также хлориды. Все эти вещества наносят вред здоровью человека, бытовым и промышленным устройствам, поэтому важно своевременно выявить проблему, и исключить негативное влияние примесей.

Одна из частых проблем, с которой сталкиваются потребители воды, — растворенные хлориды. Возникает вопрос «Чем убрать хлориды из воды?». Давайте разбираться…

Чем обусловлено превышение хлоридов в воде

Хлориды — это соли соляной кислоты. Чаще всего в воде присутствуют хлориды натрия, кальция и магния. В силу своей химической природы эти соединения обладают хорошей растворимостью и практически полным отсутствием склонности к сорбции, их не поглощают подводные обитатели, также они склонны к постоянной миграции. Все эти факторы способствуют высокому содержанию хлоридов в воде.

В мировом океане содержание хлоридов достигает 87%, поэтому вода из морей и океанов абсолютно непригодна для употребления. В пресные водоемы хлориды попадают из подземных вод путем вымывания из пород, вулканических остатков. Не малое влияние оказывает жизнедеятельность человека — загрязнение сточными водами и промышленными выбросами является основным фактором снижения качества воды.

Подробнее о природе хлоридов, допустимых нормах их содержания и способах обнаружения вы можете прочитать в статье: «Что такое хлориды в воде».

Основные способы очистки воды от хлоридов

Существуют 4 основных метода удаления хлоридов из воды, однако, в силу химико-физических свойств эффективность данных методов разная. В промышленных и домашних условиях снижение повышенного содержания хлоридов в воде проводят следующими способами:

  1. Очистка хлоридов в воде с помощью сорбции;
  2. Ионные фильтры для воды от хлоридов;
  3. Озонирование;
  4. Установки обратного осмоса для очистки воды от хлоридов.
Читайте также:  Подвид вид способ словообразования

Однако, очень часто при превышении хлоридов в воде, повышена также минерализация воды. В этом случае, для очистки воды от минерализации, эффективным является только метод обратного осмоса.

Сорбция — первый метод удаления хлоридов из воды

В силу того, что сильнорастворимые и самые распространенные хлориды обладают низкой склонной к сорбции, данным способом можно очистить воду лишь от труднорастворимых веществ: хлорида серебра, хлорида меди, хлорида свинца и хлорида ртути.

Суть данного способа очистки воды от хлорид-ионов состоит в том, что поступающие вместе с жидкостью вещества задерживаются на фильтрующей поверхности сорбционных фильтров с повышенной поглощающей способностью. Чаще всего в роли сорбента используют активированный уголь. Еще одна особенность данного способа очистки воды от хлоридов — необходимость проведения предварительного обеззараживания воды: уголь способствует быстрому распространению и развитию колоний бактерий.

Данный метод очистки воды от хлоридов можно использовать в бытовых целях в совокупности с иными методами водоподготовки.

Как понизить содержание хлоридов в воде с помощью ионного обмена

Ионообменные фильтры для очистки от хлоридов в воде используются в промышленности и для частных домов. Сущность метода снижения хлоридов в воде состоит в том, что специальная смола при контакте с водой поглощает отрицательно заряженные ионы всех солей. На выходе образуются ионы металлов: натрия, кальция, магния. Процесс помогает снизить жесткость воды.

Реакция происходит в анионитовых фильтрах, с предварительно загруженным специальным составом из синтетических смол, которые заменяют собственные ионы на ионы жесткости воды.

Озонирование — химическая очистка воды от хлоридов

Озон — это сильный окислитель, под его влиянием хлориды превращаются в нерастворенные вещества, которые удаляются из воды путем механической фильтрации. Вдобавок при такой обработке происходит дезинфекция воды. Для осуществления процесса необходимы специальные системы для очистки воды от хлорида натрия.

Как правило, озонаторы используются в промышленности и на водоочистительных станциях ввиду высокой стоимости, а также опасности чистого озона для жизни человека, в быту такие устройства не используются. Промышленная очистка воды от хлоридов с помощью озона уходит в прошлое. На смену приходят методы очистки хлоридов в воде с помощью обратного осмоса.

Как удалить хлориды в воде с помощью обратного осмоса

К наиболее прогрессивным и эффективным способам снижения высокой концентрации хлоридов в воде относят установки обратного осмоса. Обратный осмос — это физический процесс, позволяющий очистить воду от растворенных веществ и механических примесей. Этим методом удается снизить концентрацию хлоридов с порядка 40 г/л (фактически это опреснение морской воды) до норм, установленных СНиП.

Очистка воды от хлоридов обратным осмосом заключается в наличие полупроницаемой мембраны, которая беспрепятственно пропускает молекулы воды, при этом удерживая молекулы растворенных веществ. Этот процесс происходит под действием сил обратного осмоса. Когда со стороны раствора с высокой концентрацией подается внешнее давление, превышающее осмотическое, молекулы воды начинают двигаться в обратном от естественного направлении, то есть в отсек установки с наименьшей концентрацией воды. Обратный осмос — наиболее эффективное и выгодное решение, если в воде много хлоридов.

Очистка воды силами обратного осмоса относится к мембранным массообменным процессам с поперечным током, при котором поступающую в систему воду разделяют на два потока — пермеат (чистую воду) и концентрат (то, что остается после очистки).
Удаление хлоридов с воды осуществляется на мембранах обратного осмоса. Обратноосмотические мембраны бывают разных типов. Разработаны 3 основные модели:

  • молекулярно-ситового разделения. Мембрана представляет собой «сито» с определенным размером отверстий. Качество очистки основывается на разном размере молекул у воды и солей. Однако соли хлорида натрия имеют схожую структуру с молекулами воды, поэтому данный тип мембран будет не очень эффективен для того, чтобы полностью очистить воду от хлорид-ионов;
  • диффузионного переноса. Процесс очистки основывается на способности молекул к диффузии. Молекулы воды образуют водородные связи на поверхности мембраны и, образуя пленку, не дают солям пройти сквозь нее.
  • капиллярно-фильтрационная. На поверхности и внутри, помещенной в раствор гидрофильной мембраны, образуется слой связанной воды, которая, образуя сетку из водородных связей, препятствует проникновению солей. Убрать хлориды из воды на этих мембранах можно до 98%.

Мембраны обратного осмоса полностью удаляют хлориды в воде

К полупроницаемым мембранам предъявляют высокие требования: способность пропускать воду и задерживать соли, иметь плотную структуру и высокое гидродинамическое сопротивление. Мембраны могут различаться по форме, по назначению, сырью, из которого изготавливаются, и способу их производства, по структуре, по величине заряда. Чаще всего изготавливаются асимметричные мембраны с плотным верхним слоем (толщиной до 1 мкм) и пористой нижележащей подложкой (толщиной 50-150 мкм). Удалить из воды хлориды можно как на производстве, так и дома. Важно отметить, что для бытового и промышленного использования применяются разные мембраны в зависимости скорости потока проходящей воды, ее состава и требований к чистоте получаемой жидкости.

К преимуществам обратноосмотического оборудования для очистки воды от хлоридов, помимо высокой степени очистки, можно также отнести низкую энергозатратность и высокий срок службы мембран.

Промышленные и бытовые установки обратного осмоса для очистки воды от хлоридов

Очистить воду от хлоридов можно на промышленных и бытовых установках обратного осмоса.

Давайте разберем, как удалить хлориды с воды на производстве. Основное направление промышленных установок обратного осмоса — обессоливание солоноватых вод и морской воды с целью получения питьевой воды, а также в качестве одной из ступени очистки жидкости для получения ультрачистой воды для медицины, теплоэнергетики и получения полупроводников.

Принципиальная схема промышленной установки обратного осмоса для удаления из воды хлоридов:

  • тонкая очистка поступающей воды от механических примесей при помощи фильтров патронного или дискового типа;
  • подача воды на насос высокого давления для создания достаточного давления среды для осуществления массообменного процесса;
  • поступление воды в обратноосмотические модули, в которых размещены мембраны, где непосредственно происходит процесс снижения повышенной концентрации хлорида в воде.
  • фильтры постобработки.
Читайте также:  Способ соединения костей черепной коробки ответ

Промышленные фильтры для очистки воды от хлоридов могут работать в круглосуточном режиме, что очень удобно для предприятий с непрерывным циклом работы, а их производительность от 100 л/час и достигает 300 м3/ч.

Как убрать хлориды из воды на бытовых фильтрах обратного осмоса

Бытовые установки очистки хлоридов из воды не включают в себя насос. Для полноценного протекания процесса достаточно напора воды в водопроводе, однако, есть напора воды недостаточно, то установки комплектуются необходимым оборудованием. Также часто наблюдается превышение хлоридов в воде из скважины. Надежность и стабильность фильтров обратного осмоса от хлоридов в воде не дает сомневаться коммерческим и частным потребителям в правильности выбора данной системы для удаления примесей.

Мы знаем, как избавиться от хлоридов в питьевой воде

Очистные системы, имеющие в комплексе обратноосмотические мембраны, а также фильтры предварительной и посточистки, помогают избавиться не только от хлоридов в воде, но и ионов металлов, вредоносных микроорганизмов, хлора, механических включений.

Наши специалисты знают, как понизить хлориды в воде. Для достижения отличного результата, важно провести анализ воды и правильно подобрать комплектацию системы. В нашей компании вы можете купить уже готовую установку, а также заказать изготовление фильтров для воды от хлоридов под запросы конкретно вашего производства или частного дома. Просто оставьте заявку на нашем сайте или по телефону 8-499-391-39-59.

Источник

Способ очистки натрия хлорида

Владельцы патента RU 2495825:

Изобретение может быть использовано в химической промышленности. Способ очистки хлорида натрия включает очистку насыщенного при 25°C водного раствора хлорида натрия от механических примесей, упарку раствора, кристаллизацию, последующее отделение кристаллов хлорида натрия центрифугированием и сушку целевого продукта. Предварительно насыщенный раствор хлорида натрия обрабатывают при перемешивании раствором соляной кислоты до концентрации 1,0-1,5 мас.% от общей массы раствора хлорида натрия, после чего упаривают при кипении в 2,0-2,5 раза. Выпавшие кристаллы охлаждают, отделяют центрифугированием. Отделенный кристаллический хлорид натрия промывают высокочистой водой и сушат при 100-110°C. Изобретение позволяет получить высокочистый хлорид натрия, содержащий примеси на уровне 10 -5 -10 -6 мас.%. 1 з.п. ф-лы, 4 пр.

Изобретение относится к способам очистки натрия хлорида и может быть использовано для получения продукта высоко степени чистоты, используемого в современных областях науки и техники.

В последние десятилетия основными областями применения хлорида натрия остаются медицина и производство пищевых продуктов, строительство и химическая промышленность. Однако требования к качеству данного продукта в разных областях его применения различные. Одно из основных требований в любой из перечисленных областей — это чистота продукта, хотя степень чистоты и ограничение содержания конкретных примесей в разных областях применения различные. Чистота хлорида натрия как конечного продукта напрямую зависит от исходного сырья и от метода его получения, либо от выбранного метода очистки продукта.

Одним из известных и широко описанных ранее методов очистки хлорида натрия является метод выпаривания различных соляных растворов. Например, для получения поваренной соли для пищевой промышленности используется метод выпаривания (RU 2075440, C01D 3/06, 1997). Соль, получаемая данным способом, содержит примеси кальция — 0,02 масс.%, магния — 0,01 масс.%, калия — 0,02 масс.% и сульфат-ионов — 0,16 масс.%, что соответствует требованиям, предъявляемым к поваренной соли «Экстра» для пищевой промышленности, но не удовлетворяет требованиям, предъявляемым к продукту для современных отраслей науки и техники (монокристаллы, оптика и др.).

Другим методом, широко применимым для очистки хлорида натрия, является ионообменный метод очистки, осуществляемый согласно известным изобретениям с помощью хелатных смол, например ионитов марки Duocellite ES-467 и Amberlite IRC-718 (US 4119508, C01D 3/16, 1985; US 5578218, C02F 1/42). Данным методом удается получать хлорид натрия со следующим содержанием лимитированных примесей (масс.%): алюминия — (1,1-7,4)·10 -3 , кремния — (7,7-8,7)·10 -4 .

Еще один метод, применяемый для выделения и очистки хлорида натрия (поваренной соли) — метод кристаллизации. Как известно, неочищенные растворы поваренной соли, полученные из различного сырья, содержат различные примеси. Например, раствор поваренной соли, полученной из галлитового сырья или каменной соли содержит примеси кальция, магния, калия, сульфат-анионов, оксида железа, которые, согласно российскому патенту (RU 2056355, C01D 3/04, 1996), отделяют от основного продукта многостадийным способом, включающим кристаллизацию. Способ получения поваренной соли (хлорида натрия) согласно данному известному изобретению включает растворение исходного сырья в циркуляционном щелоке, отделение из полученного горячего насыщенного раствора нерастворимых примесей, охлаждение осветленного хлорнатриевого раствора в присутствии кристаллов хлорида натрия на многоступенчатой вакуум-кристаллизационной установке, сгущение и фильтрацию на центрифугах полученной суспензии и выделение целевого продукта. Данным способом получают хлорид натрия с содержанием основного продукта (NaCl) на уровне 94,8-99,95 масс.%. Оптимальный результат в известном способе достигается при использовании наиболее чистого сырья — каменной соли, содержащей 94,8 масс.% хлорида натрия. В этом случае содержание примесей составляет (масс.%): Ca 2+ — 0,0055; Mg 2+ — 0,002; SO 4 2 − — 0,0035; K + — 0,0065; Fe2O3 — 0,0004; H2O — 0,1 и получаются кристаллы хлорида натрия размером 1,2-0,2 мм. Однако, как видно из описания данного способа, он применим для получения поваренной пищевой соли, однако не соответствует более строгим по чистоте требованиям для современных отраслей науки и техники (монокристаллы, оптика и др.). Поскольку по своей технической сущности данный способ наиболее близок предлагаемому способу, он выбран в качестве прототипа.

Для получения высокочистого продукта, качество которого соответствует требованиям, предъявляемым к химическим продуктам высокой степени чистоты, предлагается способ очистки, в котором исходный насыщенный при 25°C раствор хлорида натрия, очищенный от механических примесей, обрабатывают при перемешивании раствором соляной кислоты до концентрации 1,0-1,5% от общей массы раствора хлорида натрия, после чего обработанный раствор упаривают в 2,0-2,5 раза, охлаждают и выпавшие кристаллы хлорида натрия отделяют центрифугированием, затем промывают его высокочистой водой и сушат при температуре 100-110°C.

Центрифугирование осуществляют со скоростью равной 500-2000 оборотов в минуту.

Читайте также:  Способы эффективного ведения деловых переговоров курсовая

Предлагаемый способ имеет сходные с прототипом стадии процесса: предварительную очистку от механических примесей, кристаллизацию из насыщенного раствора хлорида натрия, выделение целевого продукта центрифугированием и его сушку. Очистка от механических примесей может осуществляться любыми известными методами отделения механических примесей, например, фильтрацией. Но кристаллизация в прототипе осуществляется на многоступенчатой вакуум-кристаллизационной установке, а в предлагаемом способе — в реакторе, выполненном из стекла, снабженном мешалкой и электрообогревом, что значительно упрощает технологический процесс.

Существенным отличием является введение дополнительной стадии, а именно стадии предварительной обработки раствора натрия хлорида раствором соляной кислоты до концентрации 1,0-1,5% от общей массы раствора хлорида натрия. Такая обработка позволяет снизить адсорбцию примесей (Fe, Ni, Co, Cu, Pb, Ca, K, As и др.) на кристаллах натрия хлорида. На качество получаемого процесса влияет и выбранное количество соляной кислоты, а именно 1,0-1,5 масс.%. Как показывают дополнительные экспериментальные исследования, завышение количества соляной кислоты не приводит к увеличению чистоты натрия хлорида, а занижение — к ухудшению качества готового продукта.

Предварительная обработка исходного раствора реактивного качества, содержащего примесные ионы на уровне 0,001 масс.%, соляной кислотой в комплексе с другими стадиями обработки (фильтрацией, кристаллизацией) обеспечивает его глубокую очистку до получения высокочистого натрия хлорида.

После обработки раствором соляной кислоты раствор хлорида натрия упаривают в 2,0-2,5 раза, после чего охлаждают до 20-25°C при постоянном перемешивании. Упаривание раствора меньше чем в 2,0 раза приводит к значительному уменьшению выхода продукта, а упаривание раствора больше чем в 2,5 раза приводит к уменьшению объема маточного раствора, а следовательно, ухудшению качества полученного продукта.

После стадии упаривания и центрифугирования выпавший осадок хлорида натрия промывают высокочистой водой. К категории высокочистых продуктов (high purity products) обычно относят химические соединения, содержащие лимитированные примеси на уровне 10 -5 -10 -6 масс.% и менее. В заявляемом способе в качестве промывной жидкости используют высокочистую воду, например, отечественный продукт — высокочистую воду марки ос.ч. 27-5 или дистиллированную воду, выпускаемую по ГОСТ 6709. Эта стадия процесса проводится во избежание загрязнения уже готового продукта.

Для отделения кристаллов натрия хлорида от маточного раствора могут применяться известные методы. Оптимальным, как показали экспериментальные исследования, в данном случае является центрифугирование, которое позволяет наиболее полно отделять маточный раствор от кристаллов. Стадию центрифугирования в рассматриваемом способе допустимо проводить при использовании широкого интервала скоростей вращения центрифуги (от 500 до 2000 оборотов в минуту). Величина используемой в процессе скорости вращения зависит от выбора того или иного типа центрифуг, каковыми могут быть центрифуги марки ОПН-3М, СМ-6МТ.

Стадия сушки кристаллов натрия хлорида осуществляется при температуре 100-110°C, которая обеспечивает полное удаление влаги. Для осуществления процесса сушки допустимы известные методы, например сушка в полочном сушильном шкафу, в сушилке кипящего слоя.

Предлагаемый способ иллюстрируется примерами, приведенными ниже.

Пример 1. Исходный 25%-ный раствор натрия хлорида (500 мл), очищенный фильтрацией от механических примесей, заливают в реактор, выполненный из стекла, снабженный мешалкой и электрообогревом. В реактор вносят 6,0 мл концентрированного (70%-ного) раствора соляной кислоты, что составляет 1,0% от общей массы раствора, перемешивают, после этого раствор упаривают при кипении (106°C) в 2,5 раза, охлаждают и выпавшие кристаллы отделяют центрифугированием при скорости центрифугирования 500 оборотов в минуту, отжатые кристаллы промывают водой ос.ч. 27-5, отжимают и сушат в сушильном шкафу при температуре 100°C. Полученный продукт содержит примеси (масс.%): Fe — 0,000005; Ca -0.000001; Mg — 0,000001; Pb — 0,00001; Co — 0,00000035; Cu — 0,000001; As — 0,00001; K — 0,001; Ni — 0,000001; SO 4 2 − — 0,001.

Пример 2. Проводят аналогично примеру 1, только в исходный 25%-ный раствор натрия хлорида (500 мл) вносят 8,4 мл концентрированного (70%-ного) раствора соляной кислоты, что составляет 1,5% от общей массы раствора, перемешивают, после этого раствор упаривают при кипении (106°C) в 2,0 раза. Затем охлаждают и выпавшие кристаллы отделяют центрифугированием при скорости центрифугирования 2000 оборотов в минуту, отжатые кристаллы промывают водой ос.ч. 27-5, отжимают и сушат при температуре 110°C. Полученный продукт содержит примеси (масс.%): Fe — 0,000005; Ca — 0,000001; Mg — 0,000001; Pb — 0,00001; Co — 0,00000001; Cu — 0,000001; As — 0,00001; K — 0,00093; Ni — 0,000001; SO 4 2 − — 0,001.

Пример 3. Проводят аналогично примеру 2, только приготовленный раствор упаривают при кипении (106°C) в 2,8 раза, выпавшие кристаллы отделяют центрифугированием при скорости центрифугирования 2000 оборотов в минуту, отжатые кристаллы промывают водой ос.ч. 27-5, отжимают и сушат в сушильном шкафу при температуре 110°C. Полученный продукт содержит примеси (масс.%): Fe — 0,00001; Ca — 0,00001; Mg — 0,000005; Pb — 0,00005; Co — 0,000001; Cu — 0,00001; As — 0,00005; K — 0,001; Ni-0,000005; SO 4 2 − -0,003.

Пример 4. Проводят аналогично примеру 3, только отжатые кристаллы после кристаллизации промывают дистиллированной водой, повторно отжимают и сушат при температуре 110°C. Полученный продукт содержит примеси (масс.%): Fe — 0,00005; Ca — 0,00005; Mg — 0,00001; Pb -0,00005; Co — 0,000005; Cu — 0,00005; As — 0,00005; K — 0,003; Ni — 0,000005; SO 4 2 − -0,005.

1. Способ очистки хлорида натрия, включающий очистку насыщенного при 25°C водного раствора хлорида натрия от механических примесей, упарку раствора, кристаллизацию, последующее отделение кристаллов хлорида натрия центрифугированием и сушку целевого продукта, отличающийся тем, что предварительно насыщенный раствор хлорида натрия обрабатывают при перемешивании раствором соляной кислоты до концентрации 1,0-1,5 мас.% от общей массы раствора хлорида натрия, после чего упаривают при кипении в 2,0-2,5 раза, выпавшие кристаллы охлаждают, отделяют центрифугированием и отделенный кристаллический хлорид натрия промывают высокочистой водой и сушат при 100-110°C.

2. Способ по п.1, отличающийся тем, что осажденный кристаллический хлорид натрия отделяют центрифугированием, осуществляемым со скоростью перемешивания, равной 500-2000 оборотов в минуту.

Источник

Оцените статью
Разные способы