Способы очищения атмосферного воздуха

Очистка воздуха

В настоящее время существует большое количество различных методов очистки воздуха от различных вредных загрязнений. К основным способам относятся:

    • Абсорбционный метод.
    • Адсорбционный метод.
    • Термическое дожигание.
    • Термокаталитические методы.
    • Озонные методы.
    • Плазмохимические методы.
    • Плазмокаталитический метод.
    • Фотокаталитический метод.

Абсорбционный метод

Абсорбция представляет собой процесс растворения газообразного компонента в жидком растворителе. Абсорбционные системы разделяют на водные и неводные. Во втором случае применяют обычно малолетучие органические жидкости. Жидкость используют для абсорбции только один раз или же проводят ее регенерацию, выделяя загрязнитель в чистом виде. Схемы с однократным использованием поглотителя применяют в тех случаях, когда абсорбция приводит непосредственно к получению готового продукта или полупродукта. В качестве примеров можно назвать:

    • получение минеральных кислот (абсорбция SO3 в производстве серной кислоты, абсорбция оксидов азота в производстве азотной кислоты);
    • получение солей (абсорбция оксидов азота щелочными растворами с получением нитрит-нитратных щелоков, абсорбция водными растворами извести или известняка с получением сульфата кальция);
    • других веществ (абсорбция NH3 водой для получения аммиачной воды и др.).

Адсорбционный метод

Адсорбционный метод являются одним из самых распространенных средств защиты воздушного бассейна от загрязнений. Только в США введены и успешно эксплуатируются десятки тысяч адсорбционных систем. Основными промышленными адсорбентами являются активированные угли, сложные оксиды и импрегнированные сорбенты. Активированный уголь (АУ) нейтрален по отношению к полярным и неполярным молекулам адсорбируемых соединений. Он менее селективен, чем многие другие сорбенты, и является одним из немногих, пригодных для работы во влажных газовых потоках. Активированный уголь используют, в частности, для очистки газов от дурно пахнущих веществ, рекуперации растворителей и т.д.

Оксидные адсорбенты (ОА) обладают более высокой селективностью по отношению к полярным молекулам в силу собственного неоднородного распределения электрического потенциала. Их недостатком является снижение эффективности в присутствии влаги. К классу ОА относят силикагели, синтетические цеолиты, оксид алюминия.

Можно выделить следующие основные способы осуществления процессов адсорбционной очистки:

    • После адсорбции проводят десорбцию и извлекают уловленные компоненты для повторного использования. Таким способом улавливают различные растворители, сероуглерод в производстве искусственных волокон и ряд других примесей.
    • После адсорбции примеси не утилизируют, а подвергают термическому или каталитическому дожиганию. Этот способ применяют для очистки отходящих газов химико-фармацевтических и лакокрасочных предприятий, пищевой промышленности и ряда других производств. Данная разновидность адсорбционной очистки экономически оправдана при низких концентрациях загрязняющих веществ и (или) многокомпонентных загрязнителей.
    • После очистки адсорбент не регенерируют, а подвергают, например, захоронению или сжиганию вместе с прочно хемосорбированным загрязнителем. Этот способ пригоден при использовании дешевых адсорбентов.

Термическое дожигание

Дожигание представляет собой метод обезвреживания газов путем термического окисления различных вредных веществ, главным образом органических, в практически безвредных или менее вредных, преимущественно СО2 и Н2О. Обычные температуры дожигания для большинства соединений лежат в интервале 750-1200 °C. Применение термических методов дожигания позволяет достичь 99%-ной очистки газов.

При рассмотрении возможности и целесообразности термического обезвреживания необходимо учитывать характер образующихся продуктов горения. Продукты сжигания газов, содержащих соединения серы, галогенов, фосфора, могут превосходить по токсичности исходный газовый выброс. В этом случае необходима дополнительная очистка. Термическое дожигание весьма эффективно при обезвреживании газов, содержащих токсичные веществав виде твердых включений органического происхождения (сажа, частицы углерода, древесная пыль и т.д.).

Читайте также:  Ненадлежащий способ защиты права апк

Важнейшими факторами, определяющими целесообразность термического обезвреживания, являются затраты энергии (топлива) для обеспечения высоких температур в зоне реакции, калорийность обезвреживаемых примесей, возможность предварительного подогрева очищаемых газов. Повышение концентрации дожигаемых примесей ведет к значительному снижению расхода топлива. В отдельных случаях процесс может протекать в автотермическом режиме, т. е. рабочий режим поддерживается только за счет тепла реакции глубокого окисления вредных примесей и предварительного подогрева исходной смеси отходящими обезвреженными газами.

Принципиальную трудность при использовании термического дожигания создает образование вторичных загрязнителей, таких как оксиды азота, хлор, SO2 и др.

Термические методы широко применяются для очистки отходящих газов от токсичных горючих соединений. Разработанные в последние годы установки дожигания отличаются компактностью и низкими энергозатратами. Применение термических методов эффективно для дожигания пыли многокомпонентных и запыленных отходящих газов.

Термокаталитические методы

Каталитические методы газоочистки отличаются универсальностью. С их помощью можно освобождать газы от оксидов серы и азота, различных органических соединений, монооксида углерода и других токсичных примесей. Каталитические методы позволяют преобразовывать вредные примеси в безвредные, менее вредные и даже полезные. Они дают возможность перерабатывать многокомпонентные газы с малыми начальными концентрациями вредных примесей, добиваться высоких степеней очистки, вести процесс непрерывно, избегать образования вторичных загрязнителей. Применение каталитических методов чаще всего ограничивается трудностью поиска и изготовления пригодных для длительной эксплуатации и достаточно дешевых катализаторов. Гетерогенно-каталитическое превращение газообразных примесей осуществляют в реакторе, загруженном твердым катализатором в виде пористых гранул, колец, шариков или блоков со структурой, близкой к сотовой. Химическое превращение происходит на развитой внутренней поверхности катализаторов, достигающей 1000 м²/г.

В качестве эффективных катализаторов, находящих применение на практике, служат самые различные вещества – от минералов, которые используются почти без всякой предварительной обработки, и простых массивных металлов до сложных соединений заданного состава и строения. Обычно каталитическую активность проявляют твердые вещества с ионными или металлическими связями, обладающие сильными межатомными полями. Одно из основных требований, предъявляемых к катализатору — устойчивость его структуры в условиях реакции. Например, металлы не должны в процессе реакции превращаться в неактивные соединения.

Современные катализаторы обезвреживания характеризуются высокой активностью и селективностью, механической прочностью и устойчивостью к действию ядов и температур. Промышленные катализаторы, изготавливаемые в виде колец и блоков сотовой структуры, обладают малым гидродинамическим сопротивлением и высокой внешней удельной поверхностью.

Наибольшее распространение получили каталитические методы обезвреживания отходящих газов в неподвижном слое катализатора. Можно выделить два принципиально различных метода осуществления процесса газоочистки — в стационарном и в искусственно создаваемом нестационарном режимах.

1. Стационарный метод.

Приемлемые для практики скорости химических реакций достигаются на большинстве дешевых промышленных катализаторов при температуре 200-600 °C. После предварительной очистки от пыли (до 20 мг/м³) и различных каталитических ядов (As,Cl2 и др.), газы обычно имеют значительно более низкую температуру.

Подогрев газов до необходимых температур можно осуществлять за счет ввода горячих дымовых газов или с помощью электроподогревателя. После прохождения слоя катализатора очищенные газы выбрасываются в атмосферу, что требует значительных энергозатрат. Добиться снижения энергозатрат можно, если тепло отходящих газов использовать для нагревания газов, поступающих в очистку. Для нагрева служат обычно рекуперативные трубчатые теплообменники.

Читайте также:  Двойственная задача способ решения

При определенных условиях, когда концентрация горючих примесей в отходящих газах превышает 4-5 г/м³, осуществление процесса по схеме с теплообменником позволяет обойтись без дополнительных затрат.

Такие аппараты могут эффективно работать только при постоянных концентрациях (расходах) или при использовании совершенных систем автоматического управления процессом.

Эти трудности удается преодолеть, проводя газоочистку в нестационарном режиме.

2. Нестационарный метод ( реверс-процесс).

Реверс-процесс предусматривает периодическое изменение направлений фильтрации газовой смеси в слое катализатора с помощью специальных клапанов. Процесс протекаетследующим образом. Слой катализатора предварительно нагревают до температуры, при которой каталитический процесс протекает с высокой скоростью. После этого в аппарат подают очищенный газ с низкой температурой, при которой скорость химического превращения пренебрежимо мала. От прямого контакта с твердым материалом газ нагревается, и в слое катализатора начинает с заметной скоростью идти каталитическая реакция. Слой твердого материала (катализатора), отдавая тепло газу, постепенно охлаждается до температуры, равной температуре газа на входе. Поскольку в ходе реакции выделяется тепло, температура в слое может превышать температуру начального разогрева. В реакторе формируется тепловая волна, которая перемещается в направлении фильтрации реакционной смеси, т.е. в направлении выхода из слоя. Периодическое переключение направления подачи газа на противоположное позволяет удержать тепловую волну в пределах слоя как угодно долго.

Преимущество этого метода в устойчивости работы при колебаниях концентраций горючих смесей и отсутствие теплообменников.

Основным направлением развития термокаталитических методов является создание дешевых катализаторов, эффективно работающих при низких температурах и устойчивых к различным ядам, а также разработка энергосберегающих технологических процессов с малыми капитальными затратами на оборудование. Наиболее массовое применение термокаталитические методы находят при очистке газов от оксидов азота, обезвреживании и утилизации разнообразных сернистых соединений, обезвреживания органических соединений и СО.

Для концентраций ниже 1 г/м³ и больших объемов очищаемых газов использование термокаталитического метода требует высоких энергозатрат, а также большого количества катализатора.

Озонные методы

Озонные методы применяют для обезвреживания дымовых газов от SO2(NOx) и дезодорации газовых выбросов промышленных предприятий. Введение озона ускоряет реакции окисление NO до NO2 и SO2 до SO3. После образования NO2 и SO3 в дымовые газы вводят аммиак и выделяют смесь образовавшихся комплексных удобрений (сульфата и нитрата аммония). Время контакта газа с озоном, необходимое для очистки от SO2 (80-90%) и NOx (70-80%)составляет 0,4 – 0,9 сек. Энергозатраты на очистку газов озонным методом оценивают в 4-4,5% от эквивалентной мощности энергоблока, что является, по-видимому, основной причиной, сдерживающей промышленное применение данного метода.

Применение озона для дезодорации газовых выбросов основано на окислительном разложении дурно пахнущих веществ. В одной группе методов озон вводят непосредственно в очищаемые газы, в другой газы промывают предварительно озонированной водой. Применяют также последующее пропускание озонированного газа через слой активированного угля или подачуего на катализатор. При вводе озона и последующем пропускании газа через катализатор температура превращения таких веществ как амины, ацетальдегид, сероводород и др.понижается до 60-80 °C. В качестве катализатора используют как Pt/Al2O3, так и оксиды меди, кобальта, железа на носителе. Основное применение озонные методы дезодорации находят при очистке газов, которые выделяются при переработке сырья животного происхождения на мясо- (жиро-)комбинатах и в быту.

Читайте также:  Радиационное загрязнение способы защиты

Плазмохимический метод

Плазмохимический метод основан на пропускании через высоковольтный разряд воздушной смеси с вредными примесями. Используют, как правило, озонаторы на основе барьерных,коронных или скользящих разрядов, либо импульсные высокочастотные разряды на электрофильтрах. Проходящий низкотемпературную плазму воздух с примесями подвергается бомбардировке электронами и ионами. В результате в газовой среде образуется атомарный кислород, озон, гидроксильные группы, возбуждённые молекулы и атомы, которые и участвуют в плазмохимических реакциях с вредными примесями. Основные направления по применению данного метода идут по удалению SO2, NOx и органических соединений. Использование аммиака, при нейтрализации SO2 и NOx, дает на выходе после реактора порошкообразные удобрения (NH4)2SO4 и NH4NH3, которые фильтруются.

Недостатком данного метода являются:

    • недостаточно полное разложение вредных веществ до воды и углекислого газа, в случае окисления органических компонентов, при приемлимых энергиях разряда
    • наличие остаточного озона, который необходимо разлагать термически либо каталитически
    • существенная зависимость от концентрации пыли при использовании озонаторов с применением барьерного разряда.

Плазмокаталитический метод

Это довольно новый способ очистки, который использует два известных метода – плазмохимический и каталитический. Установки, работающие на основе этого метода, состоят из двух ступеней. Первая – это плазмохимический реактор (озонатор), вторая — каталитический реактор. Газообразные загрязнители, проходя зону высоковольтного разряда в газоразрядных ячейках и взаимодействуя с продуктами электросинтеза, разрушаются и переходят в безвредные соединения, вплоть до CO2 и H2O. Глубина конверсии (очистки) зависит от величины удельной энергии, выделяющейся в зоне реакции. После плазмохимического реактора воздух подвергается финишной тонкой очистке в каталитическом реакторе. Синтезируемый в газовом разряде плазмохимического реактора озон попадает на катализатор, где сразу распадается на активный атомарный и молекулярный кислород. Остатки загрязняющих веществ (активные радикалы, возбужденные атомы и молекулы), не уничтоженные в плазмохимическом реакторе, разрушаются на катализаторе благодаря глубокому окислению кислородом.

Преимуществом этого метода являются использование каталитических реакций при температурах, более низких (40-100 °C), чем при термокаталитическом методе, что приводит к увеличению срока службы катализаторов, а также к меньшим энергозатратам (при концентрациях вредных веществ до 0,5 г/м³.).

Недостатками данного метода являются:

    • большая зависимость от концентрации пыли, необходимость предварительной очистки до концентрации 3-5 мг/м³,
    • при больших концентрациях вредных веществ(свыше 1 г/м³) стоимость оборудования и эксплуатационные расходы превышают соответствующие затраты в сравнении с термокаталитическим методом

Фотокаталитический метод

Сейчас широко изучается и развивается фотокаталитический метод окисления органических соединений. В основном при этом используются катализаторы на основе TiO2, которые облучаются ультрафиолетом. Известны бытовые очистители воздуха японской фирмы «Daikin», использующие этот метод. Недостатком метода является засорение катализатора продуктами реакции. Для решения этой задачи используют введение в очищаемую смесь озона, однако данная технология применима для ограниченного состава органических соединений и при небольших концентрациях.

Источник

Оцените статью
Разные способы