Способы образования непосредственных умозаключений

Логика — доступно для всех

Непосредственные умозаключения

Поможем написать любую работу на аналогичную тему

Непосредственные умозаключения — такие, в которых заключение выводится из одной посылки. Например, из суждения «Все адвокаты — юристы» можно получить новое суждение «Некоторые юристы — адвокаты». Непосредственные умозаключения дают нам возможность выявить знание о таких сторонах предметов, которое уже содержалось в исходном суждении, но не было явно выражено и явно осознано. В этих условиях мы делаем неявное — явным, неосознанное — осознанным.

К непосредственным умозаключениям относятся: превращение, обращение, противопоставление предикату, умозаключение по «логическому квадрату».

Превращение такое умозаключение, в котором исходное суждение преобразуется в новое суждение, противоположное по качеству, и с предикатом, противоречащим предикату исходного суждения.

Чтобы превратить суждение, надо изменить его связку на противоположную, а предикат — на противоречащее понятие. Если посылка выражена не в явной форме, то надо преобразовать ее в соответствии со схемами суждений А, Е, I, О.

Если посылка записана в форме суждения «Не все S суть Р» , то его надо преобразовать в частноотрицательное: «Некоторые S не суть Р».

Примеры и схемы превращения:

Все студенты первого курса изучают логику.

Ни один студент первого курса не изучает не логику.

Е: Ни одна кошка не является собакой.

Всякая кошка является не-собакой.

I: Некоторые адвокаты суть спортсмены.

Некоторые адвокаты не суть не-спортсмены.

Некоторые S не суть не-Р.

О: Некоторые адвокаты не суть спортсмены.

Некоторые адвокаты суть не-спортсмены.

Обращение такое непосредственное умозаключение, в котором происходит перемена мест субъекта и предиката при сохранении качества суждения.

Обращение подчиняется правилу распределенности терминов: если термин не распределен в посылке, то он не должен быть не распределен и в заключении.

Если обращение ведет к изменению исходного суждения по количеству (из общего исходного получается новое частное суждение), то такое обращение называется обращением с ограничением; если обращение не ведет к изменению исходного суждения по количеству, то такое обращение является обращением без ограничения.

Примеры и схемы обращения:

А: Общеутвердительное суждение обращается в частноутвердительное.

Все адвокаты — юристы.

Некоторые юристы — адвокаты.

Общеутвердительные выделяющие суждения обращаются без ограничения. Всякое правонарушение (и только правонарушение) суть противоправное деяние.

Всякое противоправное деяние суть правонарушение.

Е: Общеотрицательное суждение обращается в общеотрицательное (без ограничения).

Ни один адвокат не судья.

Ни один судья не адвокат.

I: Частноутвердительные суждения обращаются в частноутвердительные.

Некоторые юристы — спортсмены.

Некоторые спортсмены — юристы.

Частноутвердительные выделяющие суждения обращаются в общеутвердительные:

Некоторые юристы, и только юристы, являются адвокатами.

Все адвокаты суть юристы.

О: Частноотрицательные суждения не обращаются.

Читайте также:  Способ предотвращения болезни хлеба

Логическая операция обращения суждения имеет большое практическое значение. Незнание правил обращения приводит к грубым логическим ошибкам. Так, довольно часто общеутвердительное суждение обращается без ограничения. Например, суждение «Все юристы должны знать логику» обращается в суждение «Все изучающие логику — юристы». Но это неверно. Верно суждение «Некоторые изучающие логику — юристы».

Противопоставление предикату это последовательное применение операций превращения и обращения — преобразование суждения в новое суждение, в котором субъектом становится понятие, противоречащее предикату, а предикатом — субъект исходного суждения; меняется качество суждения.

Например, из суждения «Все адвокаты — юристы» можно, противопоставляя предикат, получить «Ни один не-юрист не является адвокатом». Схематически:

Умозаключение по «логическому квадрату». «Логический квадрат» — это схема, выражающая истинностные отношения между простыми суждениями, имеющими один и тот же субъект и предикат. В данном квадрате вершины символизируют известные нам по объединенной классификации простые категорические суждения: А, Е, О, I. Стороны и диагонали можно рассматривать как логические отношения между простыми суждениями (кроме эквивалентных). Так, верхняя сторона квадрата обозначает отношение между А и Е — отношение противоположности; нижняя сторона -отношение между О и I — отношение частичной совместимости. Левая сторона квадрата (отношение между А и I) и правая сторона квадрата (отношение между Е и О) — отношение подчинения. Диагонали обозначают отношения между А и О, Е и I, которые называются противоречием.

Отношение противоположности имеет место между суждениями общеутвердительными и общеотрицательными (А-Е). Сущность этого отношения состоит в том, что два противоположных суждения не могут быть одновременно истинными, но могут быть одновременно ложными. Поэтому если одно из противоположных суждений истинно, то другое непременно ложно, но если одно из них ложно, то о другом суждении еще нельзя безоговорочно утверждать, что оно истинно, — оно неопределенно, т. е. может оказаться как истинным, так и ложным. Например, если истинно суждение «Всякий адвокат является юристом», то противоположное ему суждение «Ни один адвокат не является юристом» будет ложно.

Но если ложно суждение «Все студенты нашего курса раньше изучали логику», то противоположное ему «Ни один студент нашего курса раньше не изучал логику» будет неопределенным, т. е. оно может оказаться как истинным, так и ложным.

Отношение частичной совместимости имеет место между суждениями частноутвердительными и частноотрицательными (IО). Такие суждения не могут быть одновременно ложными (по крайней мере одно из них истинно), но могут быть одновременно истинными. Например, если ложно суждение «Иногда можно опаздывать на урок», то суждение «Иногда нельзя опаздывать на урок» будет истинным.

Но если одно из суждений истинно, то другое суждение, находящееся с ним в отношении частичной совместимости, будет неопределенным, т.е. оно может оказаться как истинным, так и ложным. Например, при истинности суждения «Некоторые люди изучают логику» суждение «Некоторые люди не изучают логику» будет истинным или ложным. Но при истинности суждения «Некоторые атомы делимы» суждение «Некоторые атомы не являются делимыми» будет ложным.

Читайте также:  Китайский способ умножения трехзначного числа

Отношение подчинения существует между общеутвердительными и частноутвердительными суждениями (А-I), а также между общеотрицательными и частноотрицательными суждениями (Е-О). При этом А и Е являются подчиняющими, а I и О — подчиненными суждениями.

Отношение подчинения состоит в том, что из истинности подчиняющего суждения обязательно следует истинность подчиненного суждения, но обратное необязательно: при истинности подчиненного суждения подчиняющее будет неопределенным — оно может оказаться как истинным, так и ложным.

Но если подчиненное суждение ложно, то подчиняющее будет тем более ложным. Обратное опять-таки необязательно: при ложности подчиняющего суждения подчиненное может оказаться как истинным, так и ложным.

Например, при истинности подчиняющего суждения «Все адвокаты — юристы» подчиненное суждение «Некоторые адвокаты — юристы» будет тем более истинным. Но при истинности подчиненного суждения «Некоторые адвокаты входят в Московскую коллегию адвокатов» подчиняющее суждение «Все адвокаты входят в Московскую коллегию адвокатов» будет ложным или истинным.

При ложности подчиненного суждения «Некоторые адвокаты не входят в Московскую коллегию адвокатов» (О) будет ложным подчиняющее суждение «Ни один адвокат не входит в Московскую коллегию адвокатов» (Е). Но при ложности подчиняющего суждения «Ни один адвокат не входит в Московскую коллегию адвокатов» (Е) подчиненное суждение «Некоторые адвокаты не входят в Московскую коллегию адвокатов» (О) будет истинным или ложным.

Отношения противоречия существует между общеутвердительными и частноотрицательными суждениями (А — О) и между общеотрицательными и частноутвердительными суждениями (Е — I). Сущность этого отношения состоит в том, что из двух противоречающих суждений одно обязательно истинно, другое — ложно. Два противоречивых суждения не могут быть ни одновременно истинными, ни одновременно ложными.

Умозаключения, основанные на отношении противоречия, называются отрицанием простого категорического суждения. С помощью отрицания суждения из исходного суждения образуется новое суждение, являющееся истинным, когда исходное суждение (посылка) ложно, и ложным, когда исходное суждение (посылка) истинно. Например, отрицая истинное суждение «Все адвокаты — юристы» (А), мы получим новое, ложное, суждение «Некоторые адвокаты не есть юристы» (О). Отрицая ложное суждение «Ни один адвокат не юрист» (Е), мы получим новое, истинное, суждение «Некоторые адвокаты — юристы» (I).

Знание зависимости истинности или ложности одних суждений от истинности или ложности других суждений помогает делать правильные выводы в процессе рассуждения.

Источник

Непосредственные умозаключения

Непосредственным называется умозаключение, в котором вывод делается из одной посылки путем преобразования исходного суждения по форме при сохранении смысла.

Читайте также:  Защита вещных прав вещно правовые способы защиты

Способы образования непосредственных умозаключений:

1) превращение;

2) обращение;

3) противопоставление предикату;

4) противопоставление субъекту;

5) ограничение третьего понятия;

6) умозаключение по логическому квадрату.

Превращение

Превращениеэто такое непосредственное умозаключение, в котором устанавливается связь между понятием, являющимся субъектом исходного суждения, и понятием, противоречащим предикату исходного суждения.

Для превращения утвердительного суждения в отрицательное при сохранении смысла исходного суждения вводят два отрицания или наоборот: если исходное суждение отрицательно, то удаляют отрицание. Таким образом, во-первых, меняется связка исходного суждения на противоположную по качеству (ォестьサ на ォне естьサ, ォсутьサ на ォне сутьサ и наоборот), а во-вторых, меняется качество предиката. исходного суждения на противоположное («Р» на «не-Р», «не-Р» на «Р»).

Общеутвердительное суждение (А) превращается в общеотрицательное (Е).

Ни одно S не есть не-P

Все караси – рыбы

Следовательно, ни один карась не является не-рыбой

Общеотрицательное суждение (Е) превращается в общеутвердительное (А).

Ни один кролик не является хищным животным

Все кролики являются нехищными животными

Частноутвердительное суждение (I) превращается в частноотрицательное (О).

Некоторые S не суть не-P

Некоторые люди являются честными

Некоторые люди не являются нечестными

Частноотрицательное суждение (О) превращается в частноутвердительное (I).

Некоторые люди не знают грамоты

Некоторые люди являются неграмотными

Обращение

Обращениеэто такое непосредственное умозаключение, при котором из данного суждения, не являющегося частноотрицательным, выводится такое суждение, субъектом которого является предикат исходного, а предикатом – субъект исходного суждения.

В зависимости от распределенности терминов исходного суждения различают два вида обращения: чистоеи нечистое.

1. Чистое (простое) обращениеимеет место в том случае, если оба термина (субъект и предикат) исходного суждения являются распределенными или оба являются нераспределенными, т. е. имеют одинаковые объемы.

Общеотрицательное суждение (Е) обращается в общеотрицательное (Е):

Ни одна стрекоза не является хищником

Ни один хищник не является стрекозой

Частноутвердительное суждение (I) обращается в частноутвердительное (I):

Некоторые студенты – члены общества защиты животных

Некоторые члены общества защиты животных – студенты

2. Нечистое обращениепредставлено двумя вариантами: обращением с ограничением и обращением с приращением.

Обращение с ограничением имеет место при переходе от общеутвердительных суждений (А) к частноутвердительным (I):

Все вегетарианцы употребляют растительную пищу

Некоторые из употребляющих растительную пищу суть вегетарианцы

Обращение с приращением имеет место в случае выделяющих суждений и связано с переходом от частных суждений к общим:

Некоторые прямоугольники – квадраты

Все квадраты – прямоугольники

Частноотрицательное суждение не обращается.

Дата добавления: 2016-02-09 ; просмотров: 708 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Оцените статью
Разные способы