Способы образования аналитических формул
Автор работы: Пользователь скрыл имя, 17 Декабря 2013 в 18:42, доклад
Описание работы
Экономические явления, которые изучаются в АХД, имеют, как правило, количественную определенность, которая выражается в абсолютных и относительных величинах.
Абсолютные величины показывают количественные размеры явления в единицах меры, веса, объема, протяженности, площади, стоимости и т.д. безотносительно к размеру других явлений.
Относительные показатели отражают соотношение величины изучаемого явления с величиной какого-либо другого явления или с величиной этого явления, но взятой за другое время или по другому объекту. Относительные показатели получают в результате деления одной величины на другую, которая принимается за базу сравнения. Это могут быть данные плана, базисного года, другого предприятия, среднеотраслевые и т.д
Файлы: 1 файл
доклад по АХД.docx
Разделив числитель и знаменатель на среднегодовое количество рабочих (КР), получим более содержательную кратную модель с другими факторными показателями: среднегодовой выработки продукции одним рабочим (ГВ), характеризующей уровень производительности труда и фондовооруженности труда (Фв):
Необходимо заметить, что на практике для преобразования одной и той же модели может быть последовательно использовано несколько методов. Например:
,где ФО – фондоотдача; РП – объем реализованной продукции (выручка); СБ – себестоимость реализованной продукции; П – прибыль; ОПФ – среднегодовая стоимость основных производственных фондов; ОС – средние остатки оборотных средств.
В этом случае для преобразования исходной факторной модели, которая построена на математических зависимостях, использованы способы удлинения и расширения. В результате получилась более содержательная модель, которая имеет большую познавательную ценность, так как учитывает причинно- следственные связи между показателями. Полученная конечная модель позволяет исследовать, как влияют на фондоотдачу рентабельность основных средств производства, соотношения между основными и оборотными средствами, а также коэффициент оборачиваемости оборотных средств.
Таким образом, результативные показатели могут быть разложены на составные элементы (факторы) различными способами и представлены в виде различных типов детерминированных моделей. Выбор способа моделирования зависит от объекта исследования, поставленной цели, а также от профессиональных знаний и навыков исследователя.[2]
Источник
Способы образования аналитических формул
Автор работы: Пользователь скрыл имя, 17 Декабря 2013 в 18:42, доклад
Описание работы
Экономические явления, которые изучаются в АХД, имеют, как правило, количественную определенность, которая выражается в абсолютных и относительных величинах.
Абсолютные величины показывают количественные размеры явления в единицах меры, веса, объема, протяженности, площади, стоимости и т.д. безотносительно к размеру других явлений.
Относительные показатели отражают соотношение величины изучаемого явления с величиной какого-либо другого явления или с величиной этого явления, но взятой за другое время или по другому объекту. Относительные показатели получают в результате деления одной величины на другую, которая принимается за базу сравнения. Это могут быть данные плана, базисного года, другого предприятия, среднеотраслевые и т.д
Файлы: 1 файл
доклад по АХД.docx
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Способы образования аналитических формул
Экономические явления, которые изучаются в АХД, имеют, как правило, количественную определенность, которая выражается в абсолютных и относительных величинах.
Абсолютные величины показывают количественные размеры явления в единицах меры, веса, объема, протяженности, площади, стоимости и т.д. безотносительно к размеру других явлений.
Относительные показатели отражают соотношение величины изучаемого явления с величиной какого-либо другого явления или с величиной этого явления, но взятой за другое время или по другому объекту. Относительные показатели получают в результате деления одной величины на другую, которая принимается за базу сравнения. Это могут быть данные плана, базисного года, другого предприятия, среднеотраслевые и т.д. Относительные величины выражаются в форме коэффициентов (при базе 1) или процентов (при базе 100).
В анализе хозяйственной деятельности используются разные виды относительных величин: планового задания, выполнения плана, динамики, структуры, координации. интенсивности, эффективности.
Относительная величина планового задания представляет собой отношение планового уровня показателя текущего года к его уровню в прошлом году или к среднему за три-пять предыдущих лет.
Относительная величина выполнения плана — это отношение между фактическим и плановым уровнем показателя, выраженное обычно в процентах.
Для характеристики изменения показателей за какой-либо промежуток времени используют относительные величины динамики. Их определяют путем деления величины показателя текущего периода на его уровень в предыдущем периоде (месяце, квартале, году). Называются они темпами роста (прироста) и выражаются обычно в процентах или коэффициентах. Относительные величины динамики могут быть базисными и цепными. В первом случае каждый следующий уровень динамического ряда сравнивается с базисным годом, а в другом уровень показателя следующего года относится к предыдущему.
Показатель структуры — это относительная доля (удельный вес) части в общем, выраженная в процентах или коэффициентах. Например, удельный вес посевов зерновых культур в общей посевной площади, удельный вес рабочих в общем количестве работников предприятия.
Относительные величины координации представляют собой соотношение частей целого между собой, например, активной и пассивной части основных производственных фондов, силовых и рабочих машин, собственного и заемного капитала и т.д.
Относительными величинами интенсивности называются те, которые характеризуют степень распространенности, развития какого-либо явления в соответствующей среде, например, степень заболеваемости населения, процент рабочих высшей квалификации и т.д.
Относительные величины эффективности — это соотношение эффекта с ресурсами или затратами, например, производство продукции на 100 га сельскохозяйственной площади, на один рубль затрат, на одного рабочего и т.д.
В практике экономической работы наряду с абсолютными и относительными показателями очень часто применяются средние величины. Они используются в АХД для обобщенной количественной характеристики совокупности однородных явлений по какому-либо признаку. Например, средняя зарплата рабочих используется для обобщающей характеристики уровня оплаты труда изучаемой совокупности рабочих. В средней величине отражаются общие, характерные, типичные черты изучаемых явлений по соответствующему признаку. Она показывает общую меру этого признака в изучаемой совокупности, т.е. одним числом характеризует всю совокупность объектов. С помощью средних величин можно сравнивать разные совокупности объектов, например, районы по уровню урожайности культур, предприятия по уровню оплаты труда и т.д.
В анализе хозяйственной деятельности используются разные типы средних величин: среднеарифметические (простые и взвешенные), среднегармонические, среднегеометрические, среднехронологические, среднеквадратические и др.[1]
Под факторным анализом понимается методика комплексного и системного изучения и измерения воздействия факторов на величину результативных показателей.
Различают следующие типы факторного анализа:
- детерминированный (функциональный) и стохастический (корреляционный);
- прямой (дедуктивный) и обратный (индуктивный);
- одноступенчатый и многоступенчатый;
- статический и динамичный;
- ретроспективный и перспективный (прогнозный).
Моделирование экономических показателей (детерминированное и стохастическое) также представляет собой сложную методологическую проблему в факторном анализе, решение которой требует специальных знаний и практических навыков в этой отрасли, почему этому вопросу в данном курсе и уделяется много внимания.
Одной из задач факторного анализа является моделирование взаимосвязей между результативными показателями и факторами, которые определяют их величину.
Моделирование – это один из важнейших методов научного познания, с помощью которого создается модель (условный образ) объекта исследования. Сущность его заключается в том, что взаимосвязь исследуемого показателя с факторными передается в форме конкретного математического уравнения.
В факторном анализе различают модели детерминированные (функциональные) и стохастические (корреляционные). С помощью детерминированных факторных моделей исследуется функциональная связь между результативным показателем (функцией) и факторами (аргументами).
При моделировании детерминированных систем необходимо выполнять ряд требований.
1. Факторы, которые включаются в модель, и сами модели должны иметь определенно выраженный характер, реально существовать, а не быть придуманными абстрактными величинами или явлениями.
2. Факторы, которые входят в систему, должны быть не только необходимыми элементами формулы, но и находиться в причинно-следственной связи с изучаемыми показателями. Иначе говоря, построенная факторная система должна иметь познавательную ценность. Факторные модели, которые отражают причинно- следственные отношения между показателями, имеют значительно большее познавательное значение, чем модели, созданные при помощи приемов математической абстракции. Последнее можно проиллюстрировать следующим образом. Возьмем две модели:
где ВП – валовая продукция предприятия; КР – численность (количество) работников на предприятии; ГВ – среднегодовая выработка продукции одним работником.
В первой системе факторы находятся в причинной связи с результативным показателем, а во второй – в математическом соотношении. Значит, вторая модель, построенная на математических зависимостях, имеет меньшее познавательное значение, чем первая.
3. Все показатели факторной модели должны быть количественно измеримыми, т.е. иметь единицу измерения и необходимую информационную обеспеченность.
4. Факторная модель должна обеспечивать возможность измерения влияния отдельных факторов, это значит, что в ней должна учитываться соразмерность изменений результативного и факторных показателей, а сумма влияния отдельных факторов должна равняться общему приросту результативного показателя.
В детерминированном анализе выделяют следующие типы наиболее часто встречающихся факторных моделей.
1. Аддитивные модели:
Y= S Xi=X1+ Х2+X3+. +Xn.
Они используются в тех случаях, когда результативный показатель представляет собой алгебраическую сумму нескольких факторных показателей.
2. Мультипликативные модели:
у= П хi=х1* х2*. * хn.
Этот тип моделей применяется тогда, когда результативный показатель представляет собой произведение нескольких факторов.
3. Кратные модели:
Они применяются, если результативный показатель получают делением.
4. Смешанные (комбинированные) модели – это сочетание в различных комбинациях предыдущих моделей:
Моделирование мультипликативных факторных систем в АХД осуществляется путем последовательного расчленения факторов исходной системы на факторы-сомножители. Например, при исследовании процесса формирования объема производства продукции можно применять такие детерминированные модели, как
ВП=КР×ГВ; ВП=КР×Д×ДВ; ВП=КР×Д×П×СВ.
Эти модели отражают процесс детализации исходной факторной системы мультипликативного вида и расширения ее за счет расчленения на сомножители комплексных факторов. Степень детализации и расширения модели зависит от цели исследования, а также от возможностей детализации и формализации показателей в пределах установленных правил.
Аналогичным образом осуществляется моделирование аддитивных факторных систем за счет расчленения одного из факторных показателей на его составные элементы. Практический пример. Как известно, объем реализации продукции
где УВП – объем производства; YИ – объем внутрихозяйственного использования продукции.
В хозяйстве продукция использовалась в качестве семян (С) и кормов (К). Тогда приведенную исходную модель можно записать следующим образом:
К классу кратных моделей применяют следующие способы их преобразования: удлинения, формального разложения, расширения и сокращения.
Первый метод предусматривает удлинение числителя исходной модели путем замены одного или нескольких факторов на сумму однородных показателей. Например, себестоимость единицы продукции можно представить в качестве функции двух факторов: изменения суммы затрат (3) и объема выпуска продукции (VВП). Исходная модель этой факторной системы будет иметь вид:
Если общую сумму затрат (3) заменить отдельными их элементами, такими как оплата труда (ОТ), сырье и материалы (СМ), амортизация основных средств (А), накладные затраты (НЗ) и др., то детерминированная факторная модель будет иметь вид аддитивной модели с новым набором факторов:
,где Х1 – трудоемкость продукции; Х2 – материалоемкость; X3 – фондоемкость; Х4 – уровень накладных затрат.
Способ формального разложения факторной системы предусматривает удлинение знаменателя исходной факторной модели путем замены одного или нескольких факторов на сумму или произведение однородных показателей. Если b=l+m+п+р, то
В результате получили конечную модель того же вида, что и исходной факторной системы (кратную модель). На практике такое разложение встречается довольно часто. Например, при анализе показателя рентабельности производства (Р):
где П – сумма прибыли от реализации продукции; З – сумма затрат на производство и реализацию продукции. Если сумму затрат заменить на отдельные ее элементы, конечная модель в результате преобразования приобретет следующий вид:
Себестоимость одного тонно-километра зависит от суммы затрат на содержание и эксплуатацию автомобиля (З) и от его среднегодовой выработки (ГВ). Исходная модель этой системы будет иметь вид: Ст/км=З/ГВ. Учитывая, что среднегодовая выработка машины, в свою очередь, зависит от количества отработанных дней одним автомобилем за год (Д), продолжительности смены (П) и среднечасовой выработки (СВ), мы можем значительно удлинить эту модель и разложить прирост себестоимости на большее количество факторов:
Метод расширения предусматривает расширение исходной факторной модели за счет умножения числителя и знаменателя дроби на один или несколько новых показателей. Например, если в исходную модель
ввести новый показатель с, то модель примет вид
В результате получилась конечная мультипликативная модель в виде произведения нового набора факторов.
Этот способ моделирования очень широко применяется в анализе. Например, среднегодовую выработку продукции одним работником (показатель производительности труда) можно записать таким образом: ГВ=ВП/КР. Если ввести такой показатель, как количество отработанных дней всеми работниками (SД), то получим следующую модель годовой выработки:
,где ДВ – среднедневная выработка; Д – количество отработанных дней одним работником.
После введения показателя количества отработанных часов всеми работниками (SТ) получим модель с новым набором факторов: среднечасовой выработки (СВ), количества отработанных дней одним работником (Д) и продолжительности рабочего дня (П):
Способ сокращения представляет собой создание новой факторной модели путем деления числителя и знаменателя дроби на один и тот же показатель:
В данном случае получается конечная модель того же типа, что и исходная, однако с другим набором факторов.
И снова практический пример. Как известно, экономическая рентабельность работы предприятия рассчитывается делением суммы прибыли (П) на среднегодовую стоимость основного и оборотного капитала предприятия (К):
Если числитель и знаменатель разделим на объем продажи продукции (товарооборот), то получим кратную модель, но с новым набором факторов: рентабельности реализованной продукции и капиталоемкости продукции:
И еще один пример. Фондоотдача определяется отношением валовой (ВП) или товарной продукции (ТП) к среднегодовой стоимости основных производственных фондов (ОПФ):
Источник