Способы обработки материалов корягин пименов худяков

Способы обработки материалов: Учебное пособие Корягин С.И., Пименов И.В., Худяков В.К. / Калинингр. ун-т. — Калининград, 2000. — 448 с.

Изложены способы обработки конструкционных материалов, приводятся основные сведения из области применения материалов в различных отраслях техники, а также об изготовлении изделий из них.
Предназначено студентам механических факультетов вузов, а также инженерам и работникам научно-исследовательских институтов.

Способы обработки материалов скачать книгу бесплатно: часть 1, часть 2

Раздел I. Основные сведения о материалах

Глава 1. Металлы и их свойства
1.1. Стали и чугун
1.2. Алюминий и его сплавы
1.3. Медь и ее сплавы
1.4. Олово, свинец и их сплавы
1.5. Прочие металлы (магний, титан, цинк, кадмий)
Глава 2. Полимеры и материалы на их основе
2.1. Термопластичные полимеры
2.2. Термореактивные полимеры
2.3. Композиционные материалы с волокнистыми наполнителями
2.4. Композиционные материалы со слоистыми наполнителями
2.5. Композиционные материалы с газообразными наполнителями
2.6. Металлополимерные каркасные материалы
Глава 3. Резиновые материалы «герметики и компаунды»
3.1. Натуральный и синтетический каучуки
3.2. Наполнители, пластификаторы и вулканизирующие агенты резин
3.3. Резины общего и специального назначения
3.4. Герметики
3.5. Компаунды
Глава 4. Неорганические материалы
4.1. Неорганические стекла и эмали для защиты металлов
4.2. Керамика
4.3. Углеграфитные материалы
4.4. Минеральные вяжущие вещества и изделия на их основе
Глава 5. Древесные материалы
5.1. Натуральные древесные материалы
5.2. Композиционные древесные материалы
Глава 6. Клеящие, лакокрасочные и травильные материалы
6.1. Клеящие материалы
6.2. Состав и обозначение лакокрасочных материалов
6.3. Маслосодержащие лакокрасочные материалы
6.4. Смоляные лаки и эмали
6.5. Травильные материалы

Раздел II. Обработка материалов

Глава 7. Обработка материалов резанием
7.1. Материалы для режущих инструментов
7.2. Элементы режима резания
7.3. Образование обработанной поверхности и стружки
7.4. Станки для обработки материалов резанием
Глава 8. Обработка металлов и их сплавов резанием
8.1. Обработка сталей и чугунов резанием
8.2. Обработка алюминия и его сплавов резанием
8.3. Обработка титана и его сплавов резанием
8.4. Обработка магния и его сплавов резанием
8.5. Обработка тугоплавких материалов резанием
Глава 9. Обработка неметаллических материалов резанием
9.1. Обработка материалов на основе полимеров
9.2. Обработка древесных материалов
9.3. Обработка неорганических материалов
Глава 10. Обработка материалов давлением и прессованием
10.1. Способы обработки материалов давлением и прессованием
10.2. Обработка металлов
10.3. Обработка полимерных материалов
10.4. Обработка резиновых материалов
10.5. Обработка неорганических материалов
10.6. Обработка древесных материалов
Глава 11. Механическая, термическая, химическая и гальваническая обработка материалов
11.1. Механическая обработка материалов
11.2. Обезжиривание материалов
11.3. Гальваническая обработка металлов
11.4. Термическая и химико-термическая обработка металлов
Глава 12. Физико-химические методы обработки
12.1. Электроэрозионные (электроразрядные) методы обработки
12.2. Электрохимические методы обработки (ЭХО)
12.3. Ультразвуковые методы механической обработки
12.4. Лучевые методы размерной обработки
Глава 13. Сварка материалов
13.1. Способы сварки материалов
13.2. Сварочное оборудование
13.3. Сварка металлов
13.4. Сварка полимерных материалов
Глава 14. Пайка материалов
14.1. Способы пайки материалов
14.2. Паяльные припои и флюсы
14.3. Оборудование для пайки
14.4. Особенности пайки различных материалов
Глава 15. Склеивание и окраска материалов
15.1. Подготовка материалов к склеиванию и окраске
15.2. Факторы, определяющие прочность склеивания и окраски
15.3. Нанесение клея и формирование клеевого слоя
15.4. Нанесение лакокрасочных покрытий

Раздел III. Основы безопасности при обработке материалов

Глава 16. Техника безопасности при обработке материалов
16.1. Техника безопасности при обработке материалов
16.2. Техника безопасности при химической и гальванической обработке материалов
16.3. Техника безопасности при сварке и пайке материалов
16.4. Техника безопасности при обработке материалов давлением и прессованием
16.5. Техника безопасности при склеивании и окраске
16.6. Охрана окружающей среды
Список рекомендуемой литературы

Способы обработки материалов скачать книгу бесплатно: часть 1, часть 2

Источник

«Калининград С.И. КОРЯГИН И.В. ПИМЕНОВ, В.К. ХУДЯКОВ СПОСОБЫ ОБРАБОТКИ МАТЕРИАЛОВ Рекомендовано Министерством образования Российской Федерации в качестве учебного пособия для студентов . »

И.В. ПИМЕНОВ, В.К. ХУДЯКОВ

СПОСОБЫ ОБРАБОТКИ

МАТЕРИАЛОВ

И.В. ПИМЕНОВ, В.К. ХУДЯКОВ

СПОСОБЫ ОБРАБОТКИ

МАТЕРИАЛОВ

Рекомендовано Министерством образования

Российской Федерации в качестве учебного

пособия для студентов высших учебных

заведений технических специальностей

УДК 678.5.046.3 Корягин С.И., Пименов И.В., Худяков В.К. Способы обработки материалов: Учебное пособие / Калинингр. ун-т – Калининград, 2000.

– 448 с. – ISBN 5-88874-152-3.

Изложены способы обработки конструкционных материалов, приводятся основные сведения из области применения материалов в различных отраслях техники, а также об изготовлении изделий из них.

Предназначено студентам механических факультетов вузов, а также инженерам и работникам научно-исследовательских институтов.

Авторы: зав. кафедрой машиноведения Калининградского государственного университета, заслуженный работник высшей школы Российской Федерации, доктор технических наук, профессор, член Московской академии естествознания С.И. Корягин; кандидат технических наук, доцент кафедры машиноведения Калининградского государственного университета В.К. Худяков; заместитель главы администрации Калининградской области, член Российской академии естественных наук И.В. Пименов.

Рецензенты: доктор технических наук, профессор Московского государственного технического университета им. Н.Э. Баумана, член Московской академии естествознания Р.К. Вафин; доктор технических наук, профессор Московского университета пищевых производств Ф.В. Долинский.

© С.И. Корягин, И.В. Пименов, ISBN 5-88874-152-3 В.К. Худяков, 2000 Сергей Иванович Корягин Иван Владимирович Пименов Владимир Константинович Худяков

СПОСОБЫ ОБРАБОТКИ МАТЕРИАЛОВ

Учебное пособие Лицензия №020345 от 14.01.1997 г.

Редакторы Л.Г. Ванцева, Н.Н. Мартынюк Технический редактор Л.Г. Владимирова Корректор Н.Н. Николаева Оригинал-макет подготовлен И.А. Хрусталевым, А.В. Раковым Подписано в печать 2.02.2000 г. Формат 60 х 90 1/16.

Бумага для множительных аппаратов.

Усл. печ. л. 28,0. Уч.-изд. л. 28,2. Тираж 500 экз. Заказ.

Калининградский государственный университет, 236041, г. Калининград, ул. А.Невского, Отпечатано в ГИПП «Янтарный сказ», 236000, г. Калининград, ул. К.Маркса, 18.

ОГЛАВЛЕНИЕ

Раздел I. Основные сведе

Глава 4. Неорганические материалы

4.1. Неорганические стекла и эмали для защиты металлов

4.3. Углеграфитные материалы

4.4. Минеральные вяжущие вещества и изделия на их основе

Глава 5. Древесные материалы

5.1. Натуральные древесные материалы

5.2. Композиционные древесные материалы. 127 Глава 6. Клеящие, лакокрасочные и травильные материалы

6.1. Клеящие материалы

6.2. Состав и обозначение лакокрасочных материалов 135

6.3. Маслосодержащие лакокрасочные материалы. 139

6.4. Смоляные лаки и эмали

6.5. Травильные материалы

8 Глава 9. Обработка неметаллических материалов резанием

9.1. Обработка материалов на основе полимеров. 197

9.2. Обработка древесных материалов

9.3. Обработка неорганических материалов. 2 Глава 10. Обработка материалов давлением и прессованием

10.1. Способы обработки материалов давлением и прессованием

10.2. Обработка металлов

10.3. Обработка полимерных материалов

10.4. Обработка резиновых материалов

10.5. Обработка неорганических материалов. 253

10.6. Обработка древесных материалов

Глава 11. Механическая, термическая, химическая и гальваническая обработка материалов.

11.1. Механическая обработка материалов

11.2. Обезжиривание материалов

11.3. Гальваническая обработка металлов

11.4. Термическая и химико-термическая обработка металлов

Глава 12. Физико-химические методы обработки.

12.1. Электроэрозионные (электроразрядные) методы обработки

12.2. Электрохимические методы обработки (ЭХО)

12.3. Ультразвуковые методы механической обработки

12.4. Лучевые методы размерной обработки. 3 Глава 13. Сварка материалов

13.1. Способы сварки материалов

13.2. Сварочное оборудование

13.3. Сварка металлов

13.4. Сварка полимерных материалов

Глава 14. Пайка материалов

14.1. Способы пайки материалов

14.2. Паяльные припои и флюсы

14.3. Оборудование для пайки

14.4. Особенности пайки различных материалов. 385 Глава 15. Склеивание и окраска материалов

15.1. Подготовка материалов к склеиванию и окраске. 391

15.2. Факторы, определяющие прочность склеивания и окраски

15.3. Нанесение клея и формирование клеевого слоя. 3

15.4. Нанесение лакокрасочных покрытий

Раздел III. Основы безопасности при обработке материалов

Глава 16. Техника безопасности при обработке материалов

16.1. Техника безопасности при обработке материалов 408

16.2. Техника безопасности при химической и гальванической обработке материалов.

16.3. Техника безопасности при сварке и пайке материалов

16.4. Техника безопасности при обработке материалов давлением и прессованием

16.5. Техника безопасности при склеивании и окраске 427

16.6. Охрана окружающей среды

Список рекомендуемой литературы

10 ВВЕДЕНИЕ

Обработка материала предусматривает придание ему необходимых размеров, формы, определенных свойств и включает в себя широкий класс следующих процессов: резание, шлифование, давление, прессование, термообработка, склеивание, пайка, сварка, оксидирование, сплавление, травление, электролиз, глубинное и поверхностное закаливание, обработка взрывом, водоструйная и пескоструйная обработка, обработка токами высокой частоты, растворение, окрашивание и др.

В период бурного развития техники и технологий будущему специалисту необходимо знать всю гамму этих процессов для грамотного выбора того или иного технологического процесса обработки различных материалов.

Традиционные и современные технологии обработки материалов описаны достаточно глубоко во многих книгах и учебниках. Однако значительная загруженность студентов не позволяет им охватить большое количество литературы, так как в каждой отдельно взятой книге, учебнике или учебном пособии описан один или несколько процессов обработки. Это затрудняет освоение студентами дисциплины «Способы обработки материалов».

Содержание учебного пособия соответствует программе курса «Основы материаловедения, технологии и обработки конструкционных материалов», утвержденной Министерством образования Российской Федерации.

Авторы отдают себе отчет в том, что их знания по способам обработки материалов не являются идеальными и что не всё в учебном пособии изложено в лучшей форме. Поэтому они были бы благодарны читателям за все ценные замечания, улучшающие и дополняющие содержание учебного пособия.

В заключение авторы считают своим долгом выразить глубокую благодарность рецензентам – докторам технических наук, профессорам Р.К. Вафину и Ф.В. Долинскому – за ценные замечания, советы и активное сотрудничество в процессе нашей работы над учебным пособием.

Сталь – сплав железа с углеродом и неизбежными примесями марганца (0,3…0,7%), кремния (0,2…0,4%), фосфора (0,01…0,05%), серы (0,01…0,05%) и скрытых примесей (кислорода, водорода и азота), присутствующих в сталях в очень малых количествах. Обычные сорта стали, применяемые в машиностроении, содержат от 0,05 до 1,5% углерода. Для изменения свойств стали в нее добавляются специальные примеси (легирующие элементы), в качестве которых выступают в различной пропорции: хром, никель, молибден, вольфрам, ванадий, титан, алюминий, марганец, кремний, бор. Режимы закалки и отпуска очень сильно влияют на структуру стали в отвержденном состоянии, из-за чего свойства стали резко изменяются.

Стали подразделяются на: углеродистую (обычного качества, специального назначения, качественная), низколегированную, легированную, для холодной листовой штамповки и высадки, рессорно-пружинную, для прокатных валков, отливок.

К стали обыкновенного качества (табл. 1) относится строительный и конструкционный металл с содержанием углерода до 0,62%, при производстве которого обычно не предъявляется никаких требований к составу шихты, процессам плавки и разливки.

Назначение углеродистой стали обыкновенного качества

Марка Назначение Ст. 0 Неответственные нерассчитываемые элементы конструкций: настилы, ограждения, лестничные марши, арматура и т. д.

Ст. 1 Связевые соединения, требующие высокой вязкости и низкой твердости, анкерные болты, жесткие связи, неответственная арматура и т. д.

Ст. 2 Элементы сварных конструкций неответственного назначения, оконные и фонарные переплеты, заклепки, анкерные болты. После цементации и нитроцементации для неответственных деталей, работающих на трение с незначительной нагрузкой Ст. 3 В горячекатаном состоянии – для строительных и других расчетных металлических конструкций, подвергаемых сварке в виде сортового, фасонного и листового проката:

балки, фермы, обечайки, днища, конструкции подъемных кранов, корпуса сосудов и аппаратов, работающих под давлением, каркасы паровых котлов Цементируемые и цианируемые детали, от которых требуются высокая твердость поверхности и невысокая прочность сердцевины: валики, поршневые пальцы, толкатели, шестерни, червяки и т. д. Детали, изготовляемые холодной штамповкой при требовании глубокой вытяжки Ст. 4 В горячекатаном состоянии – в сварных, клепаных и болтовых конструкциях повышенной прочности в виде сортового, фасонного и листового проката, а также для малонагруженных деталей: валы, оси шестерни, втулки, вкладыши, рычаги, гайки, шайбы, серьги, хомуты, червяки другие детали как в термически необработанном, так и в улучшенном состояниях. Цементируемые и цианируемые детали, от которых требуются высокая твердость поверхности и невысокая прочность сердцевины: валики, поршневые пальцы, упоры, толкатели, шестерни, червяки и т. д.

Окончание табл. 1 14 Марка Назначение Ст. 5 Арматура, крюки кранов, детали машин, подвергаемые воздействию небольших напряжений: болты, гайки, валы, оси, звездочки, рычаги, тяги, арматура, серьги рессор, упоры подшипников и другие детали как в горячекатаном, так и в термически обработанном состояниях Ст. 6 Детали повышенной прочности: оси, валы, клинья, тяги, фланцы, стяжные кольца, пальцы траков, зубья барабанов молотилок и другие детали сельскохозяйственного машиностроения в термически обработанном состоянии Ст. 7 Средненагруженные детали, подвергаемые повышенному износу: рессоры, пружины, валы, шестерни, червяки, звездочки, пальцы траков и другие детали в термически обработанном состоянии

Марка Назначение сварные детали, подвергаемые термической обработке (гидроцилиндры и др.) После нормализации или закалки и высокого отпуска – тяги, оси, цилиндры, колонны прессов, коленчатые валы, шатуны, крепежные детали, шпиндели, звездочки, тяги, подушки, ободья, серьги, траверсы, валы, бандажи, цилиндры прессов и др.

После жидкостной цементации – установочные и крепежные винты, гайки, звездочки, штифты, диски, шпиндели, втулки, соединительные муфты, оси, серьги, рычаги и другие детали станков, к которым предъявляются требования высокой поверхностной твердости 40 и 45 После закалки и отпуска (HRC 40. 50) – детали средних размеров несложной конфигурации, к которым предъявляются требования повышенной прочности и твердости, работающие без ударных нагрузок:

Читайте также:  Толкование нормы права понятие виды способы

ролики, валики, цапфы, втулки, муфты, фрикционные диски, собачки, шпонки, храповики, заглушки, звездочки, штуцера, рычаги и др.

После улучшения – детали, работающие при небольших скоростях и средних удельных давлениях:

шестерни, валы, работающие в подшипниках качения, шлицевые валики, втулки зубчатых муфт, оси, бандажи, шлицевые валики, коленчатые, распределительные и шестеренные валы, зубчатые венцы маховиков, штоки, шпиндели, траверсы, плунжеры, болты, пальцы и звенья траков тракторов, арматура насосов, шатуны, хвостовики, цилиндры, коромысла, диски сцепления, валы шахтно-подъемных машин, оправки и другие детали После поверхностного упрочнения с нагревом т.в.ч. – детали средних и крупных размеров, к которым предъявляются требования высокой поверхностной твердости и повышенной износостойкости при малой деформации: шестерни, валы, работающие в подшипниках скольжения при средней окружной скорости и др.

Сталь тонколистовая для автомобильных кузовов. Листы изготовляют из качественной малоуглеродистой стали для холодной штамповки деталей с особо сложной вытяжкой (категория ОСВ) и для штамповки деталей со сложной вытяжкой (категория СВ). Листы изготовляют в термически обработанном состоянии и в дрессированном виде. По качеству поверхности листы разделяются на две группы отделки.

Сталь тонколистовая качественная углеродистая конструкционная поставляется в отожженом, нормализованном, отпущенном и в высокоотпущенном состояниях. Горячекатаные листы со станов нерперывной прокатки допускается поставлять без термической обработки при соблюдении всех норм по свойствам. Холоднокатаные листы марок 05кп и 08кп для штамповки деталей весьма глубокой вытяжки поставляются по механическим свойствам и микроструктуре или по штампуемости, а в необходимых случаях и в дрессированном виде. По способности к вытяжке при штамповке листы подразделяются на группы: ВГ – весьма глубокой, Г – глубокой и Н – нормальной вытяжки.

К листовой стали для весьма глубокой и глубокой вытяжки предъявляются определенные требования по величине зерна.

Сталь листовая конструкционная для авиастроения поставляется в термически обработанном состоянии (отожженной, нормализованной или высокоотпущенной). Толстые листы, прокатанные на станах непрерывной прокатки, могут поставляться без термической обработки. Классификация листов по способности к вытяжке и состоянию отделки поверхности приведена в табл. 6.

Сталь горячекатаная тонколистовая качественная углеродистая конструкционная для автостроения используется для изготовления деталей холодной штамповкой. Листы поставляются в термически обработанном состоянии. Листы, прокатанные на станах непрерывной прокатки, могут поставляться без термической обработки. Листы из стали 25 и выше по особым техническим условиям могут быть отожжены на зернистый перлит.

По штампуемости листы разделяются на листы глубокой (Г) и нормальной (Н) вытяжки. По состоянию поверхности и штампуемости листы разделяются на четыре категории: IГ, IIГ, IН, IIН.

Сталь тонколистовая легированная конструкционная поставляется в виде горяче- и холоднокатаных листов в термически обработанном состоянии: отожженном, нормализованном, нормализованном и отпущенном, высокоотпущенном.

Лента стальная низкоуглеродистая холодной прокатки предназначается для штамповки деталей в машиностроении и для изготовления труб и других изделий.

Рессорно-пружинную легированную сталь, характеризующуюся высокими пределами текучести (упругости) и выносливости при достаточной вязкости и пластичности, применяют для изготовления рессор, пружин, буферов и других деталей,

Марка Назначение и характеристика Хромомарганцевованадиевая 50ХГФА Ответственные пружины и рессоры легковых автомобилей; пружины, работающие при повышенных температурах (до 300°С); пружины различного назначения, подвергающиеся в процессе работы многократным переменам нагрузок и требующие длительного цикла работы Хромованадиевая 50ХФА Клапанные пружины и рессоры легковых автомобилей; сальниковые пружины, пружины для секционных колец поршня цилиндра, листовые рессоры автомобиля, пружины, работающие при повышенных температурах (до 300°С), пружины, подвергающиеся в процессе работы многократным переменам нагрузок и требующие длительного цикла работы.

Сталь малосклонна к росту зерна; прокаливается в сечении до 50 мм при закалке в масле Хромокремнистая 60С2Х Крупные высоконагруженные пружины и рессоры ответственного назначения (рессоры трактора и др.) 70С2ХА Высоконагруженные пружины из тонкой пружинной ленты (пружины часовых механизмов, различных приборов и др.) Кроме легированной стали для изготовления рессор и пружин применяют углеродистую сталь марок 65, 70, 75, 85.

Величина предела текучести в углеродистой стали после окончательной термической обработки должна быть не ниже 800 МПа. Значения относительного удлинения и сужения поперечного сечения, характеризующие пластичность, должны быть не ниже 5 и 20% соответственно.

Углеродистая рессорно-пружинная сталь содержит (в %):

0,6…1,00 С; 0,30…0,80 Mn и 0,15…0,37 Si. Содержание углерода в легированной стали находится в пределах 0,40-0,74 %.

Легирование производится преимущественно кремнием, марганцем и хромом, а для особо ответственных деталей вводятся также никель, вольфрам и ванадий.

На предел выносливости стали влияет также состояние поверхности образца, так как наружные дефекты могут являться концентраторами напряжений и причиной образования усталостных трещин. Обезуглероживание поверхности также существенно снижает усталостную прочность стали.

Оптимальным пределом твердости для рессор, обеспечивающим максимальный предел выносливости, является HRC 39. 44.

Упругие и прочностные свойства пружинной стали повышаются при применении изотермической закалки.

Для пружин, работающих при повышенных температурах или в коррозионно-активных средах, применяют теплоустойчивую и нержавеющую сталь разных марок, легированную значительными количествами хрома, никеля, вольфрама и молибдена.

Сталь для холодной высадки изготовляется в виде прутков круглого и шестигранного сечений. Выпускается два вида сталей: горячекатаная (термически обработанная и без термической обработки, с обычным классом точности по допускаемым отклонениям) и калиброванная (зачастую в шлифованном виде, с 4-м классом точности по допускаемым отклонениям). Для выпуска применяются следующие марки стали: 10, 25, 30, 35, 40, 45, 15Х, 20Х, 30Х, 35Х, 40Х, 38ХА, 20Г2, 40ХН, 15ХФ, 20ХФ, 30ХМА, 20ХГСА, 30ХГС.

Сталь для отливок (табл. 8) предназначается для производства фасонных деталей, получаемых отливкой в земляные и металлические формы (кокили) или методами точного литья.

Таблица 8 Назначение и свойства стали для отливок Марка Назначение и свойства 15Л, 20Л Мульды разливочных машин, шайбы, крышки цилиндров, шлаковые ковши, поддоны, арматура печей, рычаги, педали и другие детали, подвергающиеся действию динамических нагрузок и резким изменениям температуры Продолжение табл. 8 Марка Назначение и свойства 25Л, 30Л Рычаги сцепления, корпусы конечной передачи, ступицы задних колес, ведущие колеса, ступицы ведущих колес в тракторостроении, корпусы турбин, станины прокатных станов и металлорежущих станков, маховики и другие фасонные детали, работающие при средних статических и динамических нагрузках; детали сварнолитых конструкций 35Л, 40Л, Станины, корпусы, детали бурильных труб, лебеЛ док, втулки компрессоров, муфты, тормозные диски, шестерни, зубчатые венцы, ведущие и направляющие колеса, кожухи, опорные катки, чашки сателлитов, рычаги, вилки, катки, звездочки и другие детали ответственного назначения, работающие при средних удельных давлениях и скоростях и подвергающиеся сильному износу 50Л и 55Л Шестерни, бегунки, колеса, зубчатые венцы, зубчатые муфты подъемно-транспортных машин, ходовые колеса, валки крупно-, средне- и мелкосортных станов для прокатки мягкого металла.

Сталь применяют после поверхностного упрочнения с нагревом током высокой частоты (т.в.ч.) 70Л Ходовые колеса диаметром до 1000 мм мостовых кранов большой грузоподъемности. Сталь применяют после улучшения и поверхностного упрочнения с нагревом т.в.ч.

35ГЛ Диски, звездочки, зубчатые венцы, шкивы, крестовины, траверсы, ступицы, вилки, зубчатые колеса, валы, кулачковые муфты, крышки подшипников, цапфы, ковши драглайнов, детали экскаваторов, щеки дробилок, бандажи бегунов и другие детали дробильно-размольного оборудования

35ХНЛ Зубчатые венцы, шестерни, втулки, зубчатые колеса экскаваторов 27СГТЛ Детали тракторов Железоуглеродистые сплавы, содержащие свыше 2,11% углерода (также легирующие элементы), называют чугуном. Чугун условно подразделяют на серый (марки С4), ковкий (К4) и высокопрочный (В4), хотя в ряде случаев провести между ними границу очень трудно. По механическим свойствам чугун классифицируют: по твердости (мягкий чугун HB 149, средней твердости НВ 197…269, твердый НВ 269), по прочности (обыкновенной прочности в 200 МПа, повышенной прочности в = 200. 380 МПа, высокой прочности в 38 МПа), по пластичности (непластичный 1%, малопластичный = 1…5%, пластичный = 5…10%, повышенной пластичности 10%). По специальным свойствам чугун подразделяют на износостойкий, антифрикционный, коррозионностойкий, жаростойкий, немагнитный. Большое влияние на структуру и свойства чугуна оказывают процессы плавки и термической обработки, а также содержание легирующих элементов.

Наличие графитовых включений обеспечивает чугуну по сравнению со сталью целый ряд существенных преимуществ.

Чугун нечувствителен к концентрации напряжений, т.е. наличие отверстий, углов, переходов, возможных раковин в отливках, пор и неметаллических включений, сравнительно мало влияют на реальную конструкционную прочность, в то время как в стальных отливках наличие таких концентраторов напряжений значительно снижает механические свойства.

Прочность серого чугуна зависит от прочности металлической основы, содержания и формы графитовых включений.

Предел прочности при сжатии в 2-4 раза выше, чем при растяжении, поэтому серый чугун применяют для изготовления деталей машин, работающих преимущественно в условиях сжимающих нагрузок. Детали, несущие высокие нагрузки, должны изготавливаться из серого чугуна, имеющего предел прочности на растяжение около 250…300 МПа и модуль упругости 115…135 ГПа (СЧ 21-40, СЧ 28-48, СЧ 32-52). К таким деталям относятся: кронштейны, зубчатые колеса, базовые и корпусные детали повышенной прочности и износостойкости, станины и салазки станков, шпиндельные бабки, блоки и гильзы цилиндров, поршневые кольца, распределительные валы, толкатели, седла клапанов, тормозные барабаны и диски сцепления; станины, крышки, фланцы, щиты электродвигателей и др. Для изготовления деталей с пониженными требованиями (крышки, кожухи, патрубки и др.) используют серый чугун (СЧ 12-28) с пределом прочности 100…150 МПа и модулем упругости 60…85 ГПа.

Ковкий чугун получают графитизирующим отжигом белого чугуна. По своим литейным и механическим свойствам он занимает промежуточное положение между серым чугуном и сталью (в = 300…700 МПа, НВ 90…270). По разнообразию свойств, в зависимости от структуры, ковкий чугун близок к стали и в ряде случаев является полноценным ее заменителем.

По сравнению со сталью ковкий чугун обладает повышенной демпфирующей способностью и малой чувствительностью к наличию концентраторов напряжений. Структура ковкого чугуна обеспечивает высокую плотность металла. Отливки с толщиной стенки 7…8 мм выдерживают гидростатическое давление до 4 МПа, что позволяет использовать ковкий чугун для производства большого ассортимента деталей водо-, газо- и паропроводных установок.

Ковкий чугун используют в автомобиле-, тракторо-, сельхозмашиностроении и других отраслях промышленности для изготовления шестерен, муфт, храповиков, рычагов, ступиц, задних мостов, коленчатых валов, деталей рулевого управления, картеров редукторов, башмаков и др.

За счет легирования и термической обработки производят чугун с особыми свойствами: чугун с шаровидным графитом (например, ВЧ 45-10), износостойкий чугун, чугун для работы в условиях абразивного износа (ИЧХ12М и др.), в условиях износа при повышенных температурах (Х28Н10 и др.), в условиях 34 сухого трения (например, титаномедистый), антифрикционный чугун (АСЧ-1 и др.), жаростойкий (например, ЖЧХ-08, ЖЧЮ-22), коррозионностойкий (СЧЩ-1 и СЧЩ-2), жаропрочный (например, ЧН19Х3М), немагнитный (типа «номаг»).

1.2. Алюминий и его сплавы Алюминий характерен тем, что его плотность составляет 2,7 т/м3 против 7,8 для железа и 9,0 для меди.

Сплавы на основе алюминия являются деформируемыми, т.е. получаются методом прокатки, прессования, ковки и т.д.

Алюминиевые сплавы характеризуются высокими тепло- и электропроводностью, хорошей коррозионной стойкостью, высокой технологической пластичностью, хорошей обрабатываемостью, резанием и большим разнообразием механических, физических, антифрикционных свойств и др.

На основе алюминия выпускаются следующие сплавы: АД, АД1, АМц, АМг, АМг5П, АМг3, АМг5, АМг6, Д1, Д1П, Д6, Д16П, Д18, Д18П, АК4, АК41-1, АК6, АК:-1, АК8, В93, В94, В95, В96Ц, В65, ВД17Ю Д20, Д21, АД31, АД33, АПБА-1, а также спеченная алюминиевая пудра (САП) и спеченные алюминиевые сплавы (САС). Основными легирующими элементами являются медь, магний, марганец, цинк, кремний, а также титан, хром, берилий, никель, цирконий, железо и др.

Из сплавов алюминия изготавливают полуфабрикаты (листы, прессованные профили, поковки и штамповки, прутки, проволоку, фольгу) разнообразных форм и размеров.

Деформируемые алюминиевые сплавы подразделяются на неупрочняемые и на упрочняемые термической обработкой.

Механические свойства неупрочняемых сплавов повышаются за счет легирования. Дополнительное упрочнение эти сплавы могут получать в результате нагартовки (деформация в холодном состоянии). Однако использование нагартовки приводит к снижению пластичности, поэтому после нагартовки применяют термическую обработку с целью повышения пластичности. К упрочняющим относятся такие сплавы, которые, помимо упрочнения от легирования, упрочняются также за счет распада пересыщенных твердых растворов. Термическая обработка сплавов в этом случае состоит обычно из закалки и старения (естественного или искусственного). Для дополнительного упрочнения таких сплавов используют нагартовку, производя ее между закалкой и старением. После этих операций возможно применение отжига.

В зависимости от области применения алюминиевых сплавов к ним предъявляются и соответствующие требования. Для деталей, несущих большие механические нагрузки, выбираются высокопрочные сплавы, работающие в условиях растяжения, сжатия, кручения и т.д. Для деталей, работающих в условиях знакопеременных нагрузок, основным параметром будет выступать усталость (выносливость) алюминиевых сплавов; для деталей, работающих под действием статических нагрузок, – долговечность, для заклепок – сопротивление срезу, для электротехнической промышленности – электропроводность, температурный коэффициент электрического сопротивления, коэффициент термического расширения и т.д.

Сопротивление срезу заклепочной проволоки для некоторых сплавов приведено в табл. 9.

Таблица 9 Гарантированное сопротивление срезу заклепочной проволоки

Весьма существенным свойством алюминиевых сплавов является их коррозионностойкость. Например, чистый алюминий (АД, АД1), сплавы АМц, АМг2 и АМг3 обладают высокой коррозионной стойкостью и могут применяться в морских и тропических условиях.

Читайте также:  Кто для обозначения специфики восточной цивилизации использовал термин азиатский способ производства

Коррозионная стойкость этих сплавов не чувствительна к методам производства полуфабрикатов. Сварные соединения этих сплавов по коррозионной стойкости близки к основному металлу. Коррозионная стойкость более легированных сплавов АМг5, АМг6 чувствительна к методам производства и условиям эксплуатации. Так, при длительном нагреве их на 60. 70°С они склонны к коррозии под напряжением и межкристаллитной коррозии. Холодная деформация усиливает эту склонность. Производство полуфабрикатов при строго контролируемых условиях обеспечивает им вполне удовлетворительную коррозионную стойкость в условиях эксплуатации.

Сварные соединения этих сплавов по коррозионной стойкости близки к основному металлу и не подвержены коррозионному растрескиванию под напряжением. Однако нагрев материала выше 100°С после сварки делает его склонным к межкристаллитной коррозии. Заклепки из сплава АМгП следует ставить в конструкцию анодированными в серной кислоте с наполнением анодной пленки хромпиком. Сплавы АВ, АД31, АД33 и АД35 обладают удовлетворительной коррозионной стойкостью. Они не чувствительны к технологическим и эксплуатационным нагревам; основной металл и сварные соединения не склонны к коррозионному растрескиванию под напряжением. Сплав АВ из-за наличия в его составе меди обладает меньшей коррозионной стойкостью, чем сплавы АД31, АД33 и АД35. Удовлетворительной коррозионной стойкостью в искусственно состаренном состоянии обладает сплав АВ, содержащий не более 0,1% Cu.

Сплавы, содержащие в своем составе медь (Д1, Д18, Д3П, Д16, ВД17, Д6, Д19, М40), а также сплавы типа В95 имеют пониженную коррозионную стойкость.

Литейные алюминиевые сплавы (АЛ1, АЛ2…АЛ13) имеют ряд особенностей: повышенную жидкотекучесть, обеспечивающую получение тонкостенных и сложных по конфигурации отливок; невысокую линейную усадку; пониженную склонность к образованию горячих трещин.

В основном используются сплавы на основе: Al-Mg (АЛ8, АЛ27; высокая коррозионная стойкость, наибольшая удельная прочность и ударная вязкость, хорошая обрабатываемость резанием); Al-Si (АЛ2, АЛ4, АЛ9; высокие литейные свойства;

повышенная герметичность отливок); Al-Cu (АЛ7, содержание меди до 6%; высокая прочность); Al-Cu-Si (АЛ3, АЛ10, АЛ14, АЛ15; простая технология литья, хорошая обрабатываемость резанием) и др.

Свойства некоторых алюминиевых сплавов представлены в табл. 12.

АЛ30 Т1 – – – 0,5 Спеченный алюминиевый порошок (САП) по сравнению с обычными алюминиевыми сплавами обладает высокой прочностью при температурах в интервале 300. 500°С и в отличие от них он не изменяет свои свойства после длительного (до 10000 ч) нагрева при температурах до 500 °С.

По коррозионной стойкости САП равноценен чистому алюминию. При введении в САП небольшого количества железа и никеля (в сумме 1,2. 1,5%) он способен длительно работать в паровоздушной среде при температурах до 350°С. Листовой САП можно сваривать контактной (точечной и роликовой) сваркой; для этой цели применяют плакирование листов САП сплавом АМц и AЛ.

САП может свариваться аргонодуговой сваркой, плавлением, если брикеты, из которых изготовлены полуфабрикаты, подвергались высокотемпературной дегазации. Механическая обработка резанием САП не вызывает трудностей; при этом может быть обеспечен 10-й класс точности.

Спеченные материалы (САС) содержат в своем составе минимальное количество окиси алюминия, а в качестве легирующих элементов в них используются железо, хром, никель и другие элементы, образующие с алюминием малорастворимые интерметаллические соединения. Прочность таких материалов достигает значения 400 МПа, а предел текучести – 330 МПа.

Прочность САС на 50% выше прочности нелегированных САП.

Из материалов САП-1 и САП-2 освоено производство тех же полуфабрикатов, что и из обычных алюминиевых сплавов (листы, профили, штамповки, фольга, трубы). Максимальный вес прессованного полуфабриката составляет 300. 400 кг. Листы изготовляют толщиной 0,8. 10 мм, размером 1000х7000 мм.

Детали и конструкции, работающие в интервале температур 300. 500°С, могут быть изготовлены из материала САП вместо нержавеющей стали. Так, например, корпус колеса вентилятора может быть выполнен из листового материала, а ступица изготовлена штамповкой. Соединение деталей осуществляется клепкой. В результате применения САП вес вентилятора уменьшается на 25. 30%. Большие преимущества получаются при применении листового и прессованного материала САП в летательных аппаратах, где уменьшение веса имеет решающее значение. Из прутков САП изготовляют штамповки весом от 1 до 150 кг, которые используются для работы при температурах до 500°С и для кратковременной работы (в течение 90. 120 с) при температурах газового потока 900. 1000°С.

Высокая жаропрочность и коррозионная стойкость САП позволяют применять его для изготовления ответственных деталей: вентилей для сжатого воздуха (500°), вентилей управляющей системы реактивных двигателей, дроссельных и редукционных клапанов гидравлических и топливных систем самолетов. САП находит также применение в электротехнической, химической и машиностроительной промышленности.

Фольга и тонкая проволока из САП могут найти успешное применение для изготовления конденсаторов и обмотки электродвигателей, работающих в условиях повышенных температур (350. 400°С).

Гладкие и ребристые трубы из САП могут быть использованы как теплообменники до 500. 550°С и благодаря высокой коррозионной стойкости в агрессивных средах находят применение в нефтяной и химической промышленности.

Из САП-1 и САП-2 изготовляют компрессорные диски, лопасти вентиляторов и турбин, заклепки, из САП-3 и САП-4 – болты, винты и другие детали.

При низком удельном весе ( = 2,75 т/м3) и сравнительно небольшой стоимости САП является перспективным материалом для изготовления поршней форсированных двигателей. В больших дизельных поршнях САП вводят только в температурно-нагруженные места. В авиационной и автомобильной промышленности из САП-1 и САП-2 изготовляют поршневые штоки, небольшие шестерни, лопатки компрессора и ряд других деталей, работающих при 300. 500°С.

Высокая коррозионная стойкость САП позволяет использовать его в судостроительной промышленности. Трубы из САП используются и в атомных реакторах.

1.3. Медь и ее сплавы Медь обладает наивысшей после серебра электропроводностью и теплопроводностью, обладает высокой коррозионной стойкостью, хорошо полируется и легко покрывается разнообразными покрытиями, однако плохо обрабатывается резанием, имеет невысокие литейные свойства, что затрудняет изготовление из нее сложных фасонных отливок.

Применяют медь в виде листов, лент, прутков, труб, проволоки, в виде порошка для нужд керамики и др.

Физические свойства меди очень сильно зависят от примесей.

Медные сплавы обладают высокой тепло- и электропроводностью, высокой коррозионной стойкостью во влажной атмосфере, хорошим сопротивлением износу без смазки и даже при абразивном износе, низким коэффициентом трения, хорошей притираемостью в паре с другими более твердыми металлами.

Медные сплавы имеют в от 150 до 900 МПа, удлинение до 53% и сужение до 40%. Особенно характерна для них высокая пластичность. Большинство медных сплавов хорошо обрабатывается давлением, легко поддается обработке резанием, полированию и разнообразным покрытиям.

Медные сплавы являются надежными материалами для работы при отрицательных температурах. Прочность и удлинение у некоторых из них даже повышаются при понижении температуры до -250°С, тогда как сплавы, например на основе железа, становятся хрупкими при этих температурах.

Недостатками медных сплавов являются их сравнительно высокий удельный вес и низкие свойства при повышенных температурах. Однако в последнее время разработана серия 42 медных сплавов (медно-циркониевые, медно-хромистые и другие) отличающихся более высокими свойствами при повышенных температурах.

Очень хорошо проявляют себя в работе при повышенных температурах вставки и целые прессформы из этих сплавов для литья под давлением высокотемпературных сплавов. Стойкость таких прессформ выше, чем прессформ из сталей с хромом, вольфрамом и другими легирующими элементами, так как высокопластичные медные сплавы не чувствительны к термическим напряжениям, поэтому на поверхности медных прессформ не появляется сетка разгара, выводящая их из строя. По коррозионной стойкости во влажной атмосфере и в воде медь и сплавы на ее основе уступают только благородным металлам.

Высокие пластические свойства меди и ее сплавов позволяют получать из них полуфабрикаты и изделия весьма сложного профиля, разнообразной толщины, размеров и т.д. Медные сплавы немагнитны.

Стандартные медные сплавы имеют обозначения, указывающие на принадлежность их к определенной группе сплавов в зависимости от химического состава.

В марке сплава указываются начальные буквы сплавов (Л – латунь, Б – бронза), начальные буквы основных легирующих элементов (например, О – олово, Ц – цинк, Мц – марганец и т.д.), а затем цифры, обозначающие содержание этих элементов в сплавах.

Например, сплав ЛАЖМц-66-6-3-2 – это латунь (Л) алюминиево-железисто-марганцовистая, которая состоит из 66% Cu, 6% Al, 3% Fe, 2% Mn, остальное Zn. Буква Л в конце, встречающаяся у некоторых марок латуней, обозначает, что сплав литейный (обычно от деформируемого отличается повышенным количеством примесей). Бр АЖ9-4 – бронза алюминиевая с железом, содержащая 9% Al, 4% Fe и остальное Cu.

Бр ОЦС6-6-3 оловяно-цинково-свинцовистая бронза, содержащая 6% Sn, 6% Zn, 3% Pb, остальное Cu.

Латуни (сплавы меди с цинком).Техническое применение имеют сплавы, содержащие до 50% Zn. Этим сплавам присущи все положительные свойства меди и других медных сплавов, т.е. сравнительно высокие электропроводность и теплопроводность (20. 50%) при более высокой прочности и лучшие технологические свойства по сравнению с чистой медью. Латунь применяют в виде катаных полуфабрикатов и отливок. Поэтому различают деформируемые и литейные латуни. По химическому составу латуни разделяются на двойные (простые), т.е.

состоящие из меди и цинка, и многокомпонентные (сложные), в состав которых, кроме цинка, входят другие элементы, улучшающие некоторые свойства сплавов.

Влияние цинка на механические свойства латуней показано на рис. 1.

Латуни, содержащие примерно до 30% Zn (по структуре это однофазные сплавы), более пластичны; дальнейшее увеличение содержания цинка повышает прочность латуни (двухфазные 44 сплавы), но ее пластичность резко уменьшается. Другие легирующие элементы (алюминий, марганец, кремний и др.) еще более повышают прочность и твердость латуни, уменьшая пластичность. Изменение свойств латуни при разном содержании цинка и других легирующих элементов объясняется изменением ее структуры. Латуни, состоящие из -твердого раствора, обладают высокой пластичностью; (+)-латуни имеют высокую прочность и твердость, но пониженную пластичность.

Высокомедистые латуни применяют в тех случаях, где требуется высокая пластичность металла, например, при изготовлении полуфабрикатов холодным прессованием. Чем больше меди в латунях, тем выше их электро- и теплопроводность и коррозионные свойства. В то же время латуни с повышенным содержанием цинка дешевле, легче обрабатываются резанием, обладают способностью лучше прирабатываться и противостоять износу без смазки. Для повышения антифрикционных свойств в латуни вводят свинец. Свинцовистые латуни по обрабатываемости резанием стоят на первом месте среди других медных сплавов. Большинство специальных латуней (марганцовистая и др.) склонно к коррозионному растрескиванию под напряжением, поэтому не рекомендуется их применение в конструкциях при длительном действии растягивающих нагрузок в среде аммиака, морской воде и в среде, содержащей углекислоту или серный ангидрид.

Коррозионная стойкость латуней повышается применением покрытий (хромирование, никелирование и др.) Не рекомендуется применение латуни в контакте с железом, алюминием и цинком.

Оловянные бронзы – это такие медные сплавы, у которых основным легирующим элементом является олово. В состав оловянных бронз входят также цинк, свинец, фосфор, никель.

Оловянные бронзы применяют в тех случаях, когда требуется высокая коррозионная стойкость в сочетании с достаточной прочностью (различная водяная и морская арматура). Эти бронзы отличаются также высокими антифрикционными свойствами, т.е. небольшим износом, малыми значениями коэффициентов трения и хорошей притираемостью в паре, например со сталью. В этом отношении они не имеют себе равных среди медных сплавов. Благодаря хорошей теплопроводности и сравнительно высоким механическим свойствам изделия из оловянных бронз могут хорошо служить в качестве подшипниковых деталей при высоких скоростях вращения и довольно значительных удельных нагрузках без заеданий.

В отечественных оловянных бронзах содержится 2. 4% Sn, 2. 15% Zn, 1. 30% Pb, до 3% Ni. Повышение содержания олова до 12% увеличивает предел прочности и текучести и твердость, но при этом уменьшается удлинение и ударная вязкость (рис. 2).

в, МПа Рис. 2. Механические свойства литых медно-оловянных сплавов в зависимости от содержания олова Цинк повышает механические свойства и жидкотекучесть малооловянных бронз, облегчает сварку и пайку. Свинец улучшает антифрикционные свойства и обрабатываемость резанием, но понижает механические свойства. Добавка никеля измельчает зерно, повышает механические свойства и улучшает структуру оловянно-свинцовых бронз. Фосфор повышает антифрикционные свойства, износоустойчивость и жидкотекучесть бронз, но при содержании более 0,02% понижает механические свойства. Оловянные бронзы делятся на литейные и деформируемые. Они сравнительно дефицитны, и поэтому их рекомендуется применять только в тех случаях, когда заменители (безоловянные бронзы и латуни, биметаллы, цинковые, легкие сплавы, пластмассы, прессованное дерево и др.) не могут обеспечить равноценную службу.

Литейные оловянные бронзы чаще всего получают путем переплавки отходов и лома и применяют главным образом для получения пароводяной (герметичной) арматуры, работающей под давлением, и для отливки антифрикционных деталей (втулки, подшипники, вкладыши, червячные пары и др.).

Все бронзы хорошо паяются мягкими припоями, однако их свариваемость затруднена (особенно многокомпонентных оловянных бронз).

Деформируемые оловянные бронзы содержат 4…8% олова и добавки фосфора, цинка и свинца. Они выпускаются в виде прутков, труб, лент и проволоки в твердом, полутвердом и мягком (отожженном) состоянии.

Высокие механические, физические и антифрикционные свойства в сочетании с удовлетворительной электропроводностью, а также высокая коррозионная стойкость делают деформируемые оловянные бронзы незаменимым материалом для изготовления пружин и пружинистых деталей в машино- и приборостроении, в авиационной и химической промышленности. Наиболее высокие упругие свойства у фосфористых бронз.

Читайте также:  Дегтярное мыло с нуля горячим способом

Электропроводность оловянных бронз меньше, чем у чистой меди на 50…60%, но выше, чем у всех других медных сплавов одинаковой прочности. Наиболее существенным показателем деформируемых оловянных бронз является высокая усталостная прочность в коррозионных средах.

Безоловянные (специальные) бронзы – это медные сплавы, содержащие в качестве легирующих элементов Al, Ni, Si, Mn, Fe, Cd, Be, Cr и др. Название бронзы определяется легирующими элементами. Они имеют высокие механические, антикоррозионные и антифрикционные свойства, а также ряд специальных свойств (высокую электропроводность, теплопроводность, жаропрочность). Наибольшее распространение в различных отраслях машиностроения получили алюминиевые бронзы. В зависимости от структуры и процентного содержания алюминия (до 14%) бронзы могут быть одно-, двух- и многофазными. Однофазные сплавы имеют высокие пластичные свойства и хорошо обрабатываются давлением в холодном и горячем состоянии. Двухфазные сплавы отличаются повышенной прочностью, но имеют пониженную пластичность, поэтому могут быть обработаны давлением только в горячем состоянии. Алюминиевые бронзы трудно паяются.

Кремнистые бронзы содержат кремний (1…3%), а также никель, цинк, свинец и марганец. Они отличаются высокими механическими свойствами, высокой упругостью и выносливостью, коррозионной стойкостью, антифрикционными свойствами, немагнитны, удовлетворительно свариваются, паяются и обрабатываются резанием, хорошо обрабатываются давлением.

Бериллиевые бронзы (1,7…2,5% Ве) являются наиболее дорогими и дефицитными из всех медных сплавов, обладают высокой химической стойкостью, износоустойчивостью и упругостью в сочетании с прочностью и твердостью, равной свойствам легированных сталей.

В качестве жаропрочных бронз применяют марганцевые (Бр.Мц5) и хромистые (Бр.Х0,5) бронзы. Кадмиевые бронзы используют для изготовления токоснимающих щеток, проводов и других деталей, требующих высокой электропроводности и жаропрочности материала. Свинцовистые бронзы (например, Бр.С-30) применяют для заливки подшипников (вкладыши, втулки), способных работать при высоких удельных давлениях до 15 МПа, высоких температурах до 350°С и скоростях до 4…5 м/с.

1.4. Олово, свинец и их сплавы

Олово – пластичный металл белого цвета с низкой температурой плавления. Высокая коррозионная стойкость на воздухе и в некоторых агрессивных средах, нетоксичность, хорошая адгезия со многими металлами обусловливают широкое применение олова для защитных покрытий.

Олово стойко в нейтральных растворах солей, разбавленных растворах слабых щелочей, уксусной кислоте, молоке и фруктовых соках, в пресной и морской воде. Наибольшее количество олова используется для защитных покрытий железа, меди и их сплавов (особенно в пищевой промышленности). Оловянные покрытия хорошо защищают медные провода от воздействия серы, содержащейся в резине. Олово также широко применяют для производства припоев, баббитов, бронз и легкоплавких сплавов.

Пластичное белое олово () устойчиво при температурах от точки затвердевания до 13,2°С, а хрупкое серое олово () образуется ниже этой температуры. При отрицательных температурах происходит превращение белого олова в серое с достаточно низкой скоростью. Самопроизвольное разрушение оловянных изделий на холоде называют «оловянной чумой», так как переход в -модификацию сопровождается большими объемными изменениями, в результате которых олово рассыпается в порошок. Контакт белого олова с серым ускоряет процесс перехода олова из пластичной в хрупкую модификацию.

Введение в олово небольших добавок сурьмы, свинца, мышьяка, меди, золота, никеля, и особенно висмута, резко снижает температуру и скорость превращения — в -олово (0,05% висмута и 0,1% сурьмы практически полностью предотвращают этот переход). Наоборот, введение в олово германия, цинка, алюминия, теллура, марганца, кобальта и магния увеличивает скорость превращения. Серое олово можно перевести в белое переплавкой.

Свинец – пластичный металл белого цвета с низкой температурой плавления. Свинец хорошо сплавляется с другими металлами, легко наносится в расплавленном состоянии или электролитически на различные металлы, хорошо поглощает вибрацию и звук, обладает хорошими смазывающими и антифрикционными свойствами, низкой проницаемостью для радиоактивных излучений. Образующаяся на поверхности свинца тонкая плотная окисная (а также сульфатная, карбонатная, хроматная) пленка хорошо защищает его от коррозии. Свинец стоек во внешних условиях (в том числе и в земле), в серной и других кислотах, в контакте со многими металлами. Стойкость в агрессивных средах повышается добавкой в свинец сурьмы, олова, серебра, кальция, мышьяка, теллура и меди.

Благодаря высокой коррозионной стойкости и хорошей обрабатываемости давлением свинец широко используется в химической аппаратуре для облицовок различных резервуаров, ванн и др.

Свинец является одним из лучших материалов для уплотнителей, сальников и прокладок, работающих в широком интервале температур. Из свинца изготавливают коррозионностойкие оболочки для кабелей, а благодаря низкой температуре плавления свинец применяют для производства плавких предохранителей, бойлерных пробок и др. Способность к поглощению звука и вибраций делает свинец ценным материалом для различного рода демпфирующих устройств (например, опорных плит на мостах). Свинец широко применяется в качестве легирующего элемента для стали, меди и других металлов с целью придания им антифрикционных свойств. Свинцово-серебряные сплавы являются хорошим протектором для стальных изделий, работающих в солесодержащих водах. Свинец токсичен, и его содержание в воздухе не должно превышать 0,01 мг/м3. Полуфабрикаты свинца выпускаются в виде листов (толщиной 0,2…15 мм, шириной 500 и 600 мм и длиной 750…1200 мм), труб (с толщиной стенок 2…10 мм и наружным диаметром 15…170 мм) и фольги.

Для заливки вкладышей подшипников различных машин используют баббиты – мягкие антифрикционные сплавы на оловянной и свинцовой основах (например, Б83 – 83% олова, остальное свинец). Для повышения твердости и ударной вязкости в состав баббитов вводят различные легирующие элементы:

сурьму, медь, мышьяк, кадмий, никель, теллур, магний.

«Вишняков В.А. Совершенствование учебного процесса по направлению «Информационный менеджмент»1. Стандарты направления «Информационный менеджмент»2. Дисциплины направления и вузовский компонент 3. Программа дисциплины «Информационный менеджмент»4. Методическое обеспечение направления ИМ 5. Научные исследования в области ИМ Введение Одной из главных проблем построения инновационных экономик является интеллектуализации, суть которой заключается в разработке эффективных механизмов формирования. »

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ Л.Г.Муханин, Ю.В.Федоров «Основы взаимозаменяемости» Часть Основы выполнения рабочих чертежей деталей. Санкт-Петербург Муханин Л.Г, Федоров Ю.В. Методическое пособие к выполнению практических работ по дисциплине «Основы взаимозаменяемости» для студентов по направлениям 200100 «Приборостроение», 220401 «Мехатроника». Часть 3 – Основы выполнения. »

«Министерство транспорта Российской Федерации Федеральное агентство железнодорожного транспорта Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Дальневосточный государственный университет путей сообщения» Кафедра «Транспортно-технологические комплексы» Г.В. Завгородний ПУТЕВОЙ МЕХАНИЗИРОВАННЫЙ ИНСТРУМЕНТ Методическое пособие по выполнению лабораторных работ Хабаровск Издательство ДВГУПС УДК 625. 144.7(075.8) ББК О211-06-51я73 З 133. »

«М.Б. Булакина, А.И. Денисюк, А.О. Кривошеев ОБЗОР ЗАРУБЕЖНОГО ОПЫТА ПО ПОДГОТОВКЕ КАДРОВ В ОБЛАСТИ НАНОТЕХНОЛОГИЙ Санкт-Петербург МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное агентство по образованию Санкт-Петербургский государственный университет информационных технологий, механики и оптики М.Б. Булакина, А.И. Денисюк, А.О. Кривошеев ОБЗОР ЗАРУБЕЖНОГО ОПЫТА ПО ПОДГОТОВКЕ КАДРОВ В ОБЛАСТИ НАНОТЕХНОЛОГИЙ Методическое пособие для преподавателей и аспирантов Санкт-Петербург. »

«Новосибирский техникум железнодорожного транспорта – структурное подразделение федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Сибирский государственный университет путей сообщения» РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОГСЭ.01 ОСНОВЫ ФИЛОСОФИИ для специальностей 23.02.01 Организация перевозок и управление на транспорте (по видам) 08.02.10 Строительство железных дорог, путь и путевое хозяйство 27.02.03 Автоматика и телемеханика на. »

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ С.Ф. Демидов, Е.В. Москвичева ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МОНТАЖА, ДИАГНОСТИКИ, РЕМОНТА И БЕЗОПАСНОЙ ЭКСПЛУАТАЦИИ ОБОРУДОВАНИЯ МОЛОЧНОЙ ПРОМЫШЛЕННОСТИ Учебно-методическое пособие Санкт-Петербург УДК 6.58.58:637.5(075) Демидов С.Ф., Москвичева Е.В. Теоретические основы монтажа, диагностики, ремонта и безопасной. »

«ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ДОПОЛНИТЕЛЬНОГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ВЛАДИМИРСКОЙ ОБЛАСТИ «ВЛАДИМИРСКИЙ ИНСТИТУТ РАЗВИТИЯ ОБРАЗОВАНИЯ ИМЕНИ Л.И. НОВИКОВОЙ» Кафедра дошкольного образования Проектирование основнойобразовательной программы дошкольного образования (методические рекомендации для разработчиков основных образовательных программ) (автор-составитель Л.Н.Прохорова) Владимир, Проектирование основной образовательной программы дошкольного образования. »

«Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Петрозаводский государственный университет» Кольский филиал РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Механика» Направление подготовки 16.03.01 Техническая физика Квалификация (степень) выпускника бакалавр Профиль подготовки бакалавра/магистра Теплофизика Форма обучения очная Выпускающая кафедра теплофизики прикладной механики и инженерной Кафедра-разработчик рабочей. »

«Юрий Анатольевич Александровский. Пограничные психические расстройства. Учебное пособие. Оглавление Об авторе. Предисловие. Раздел I. Теоретические основы пограничной психиатрии Общее понятие о пограничных формах психических расстройств (пограничных состояниях). 5 Краткий исторический очерк. Системный анализ механизмов психической дезадаптации, сопровождающей пограничные психические расстройства Основные подсистемы единой системы психической адаптации. Барьер психической адаптации и. »

«КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ МАТЕМАТИКИ И МЕХАНИКИ ИМЕНИ Н.И. ЛОБАЧЕВСКОГО Кафедра геометрии Е.Н. СОСОВ Введение в метрическую геометрию и ее приложения КАЗАНЬ – 2015 УДК 515.124.4 Печатается по решению Редакционно-издательского совета ФГАОУВПО “Казанский (Приволжский) федеральный университет” Учебно-методической комиссии Института математики и механики Протокол No. 9 от 18 июня 2015 г. заседания кафедры геометрии Протокол No. 8 от 11 июня 2015 г. Научный редактор доктор физ.-мат. »

«СОДЕРЖАНИЕ I. Пояснительная записка.. II. Учебный план.. III. Рабочие программы учебных предметов.. 3.1 Базовый цикл Программы 3.1.1Учебный предмет «Основы законодательства в сфере дорожного движения»..6 3.1.2 Учебный предмет «Психофизиологические основы деятельности водителя»..1 3.1.3 Учебный предмет «Основы управления транспортными средствами»..15 3.1.4 Учебный предмет «Первая помощь при дорожно-транспортных происшествиях».1 3.2 Специальный цикл Программы. 3.2.1 Учебный предмет «Устройство и. »

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ В.А. Трофимов, Л.П. Шарок ОСНОВЫ КОМПОЗИЦИИ Учебное пособие Санкт-Петербург ББК 85 УДК 72 Трофимов В.А., Шарок Л.П. Основы композиции. – СПб: СПбГУ ИТМО, 2009. – 42 с. В учебном пособии изложены понятия об основных категориях и закономерностях композиции объемно-пространственных форм. Рассматриваются основные. »

«СОДЕРЖАНИЕ Стр.1. Общие положения 1.1. Основная образовательная программа (ООП) магистратуры 4 «Международная торговля и механизм ВТО»1.2. Нормативные документы для разработки магистерской програм4 мы «Международная торговля и механизм ВТО»1.3. Общая характеристика магистерской программы 1.4 Требования к уровню подготовки, необходимому для освоения ма6 гистерской программы 2. Характеристика профессиональной деятельности выпускника магистерской программы 9 2.1. Область профессиональной. »

«Новосибирский техникум железнодорожного транспорта – структурное подразделение федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Сибирский государственный университет путей сообщения» РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОДП.02 ФИЗИКА для специальностей 23.02.01 Организация перевозок и управление на транспорте (по видам) (для железнодорожного транспорта), 08.02.10 Строительство железных дорог, путь и путевое хозяйство, 23.02.06. »

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ А.С. Скобун, Ж.В. Белодедова ОРГАНИЧЕСКАЯ ХИМИЯ КАЧЕСТВЕННЫЙ АНАЛИЗ БИООРГАНИЧЕСКИХ СОЕДИНЕНИЙ Лабораторный практикум Учебно-методическое пособие Санкт-Петербург УДК 547.1Скобун А.С., Белодедова Ж.В. Органическая химия. Качественный анализ биоорганических соединений: Лабораторный практикум: учеб.-метод. »

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Механико-математический факультет Кафедра теоретической кибернетики Н. Н. Токарева Симметричная криптография. Краткий курс Учебное пособие Новосибирск УДК 519.7 ББК 22.1 Т 510 ISBN 978-5-4437-0067-0 Токарева Н. Н. Симметричная криптография. Краткий курс: учебное пособие / Новосиб. гос. ун-т. Новосибирск, 2012. 234 с. Учебное пособие представляет собой введение в современные методы симметричной криптографии и служит. »

«Наталья Николаевна Овчинникова Рекламное дело: учебное пособие http://www.litres.ru/pages/biblio_book/?art=171313 Н.Н. Овчинникова. Рекламное дело: Дашков и Ко; Москва; 2008 ISBN 978-5-91131-648-8 Аннотация В данной книге изложены основные разделы теории и методики организации рекламной деятельности, рассматриваются механизмы действия рекламы, работы рекламных агентств и вопросы использования средств рекламы в торговле. Также анализируются различные способы рекламной деятельности. Обобщен. »

«Методические и иные документы, разработанные преподавателями для обеспечения образовательного процесса Направления подготовки 38.04.04 Государственное и муниципальное управление Магистерская программа Система государственного и муниципального управления № Наименование Наименование учебников, учебно-методических, методических пособий, разработок и рекомендаций дисциплины Роздольская, И. В. Теория и механизмы современного государственного управления [Текст] : метод. рек. по выполн. курсовой. »

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ Е.И. Борзенко ИССЛЕДОВАНИЕ РЕЖИМОВ РАБОТЫ РЕФРИЖЕРАТОРА-ОЖИЖИТЕЛЯ НА КРИОГЕННОЙ ГЕЛИЕВОЙ УСТАНОВКЕ КГУ-150/4,5 Учебно-методическое пособие Санкт-Петербург УДК 621.59 Борзенко Е.И. Исследование режимов работы рефрижератораожижителя на криогенной гелиевой установке КГУ-150/4,5: Учеб.-метод. пособие. –. »

«В. Н. Княгинин Модульная революция: распространение модульного дизайна и эпоха модульных платформ Санкт-Петербург Промышленный и технологический форсайт Российской Федерации на долгосрочную перспективу В. Н. Княгинин Модульная революция: распространение модульного дизайна и эпоха модульных платформ Рекомендовано Учебно-методическим объединением по университетскому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению подготовки магистров. »

2016 www.metodichka.x-pdf.ru — «Бесплатная электронная библиотека — Методички, методические указания, пособия»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.

Источник

Оцените статью
Разные способы