Способы обмена клетки со средой таблица гистология

Способы обмена клетки со средой таблица гистология

ЦИТОЛОГИЯ
СТРОЕНИЕ КЛЕТКИ, ЭНДОЦИТОЗ

Структурные компоненты Строение Функции
Часть клетки ЯДРО
Хроматин Комплекс ДНК с гистоновыми и негистоновыми белками; гетерохроматин— сильноконденсированный, неактивный; эухроматин— слабоконденсированный, активный; в митозе хроматин максимально конденсируется и получает название хромосом Хранение и передача наследственной информации, управление всеми процессами в клетке
Ядрышко Округлое темно-окрашенное тельце в ядре; место образования рибосом; формируется вокруг участка ДНК, где закодирована структура рибосомальных РНК Образование рибосомальных РНК и сборка субъединиц рибосом
Нуклеоплазма Жидкая среда ядра, содержащая молекулы РНК, структурные и регуляторные белки, углеводы, молекулы АТФ Диффузия веществ внутри ядра; в ней идут сплайсинг и процессинг РНК
Ядерная оболочка Состоит из 2 мембран, между которыми имеется перинуклеарное пространство, оно сообщается с полостью гранулярного эндоплазматического ретикулума. К внутренней поверхности ядерной оболочки прикреплены специальные белки, образующие ядерную пластинку. В ядерной оболочке имеются отверстия — ядерные поры, которые по краям окружены специальными белками, регулирующими пропускную способность ядерной поры Структурное разграничение ядра и цитоплазмы; разграничение по времени транскрипции и трансляции. Ядерная пластинка служит для прикрепления молекул ДНК и для сборки ядерной оболочки после митоза. Поры обеспечивают транспорт веществ в ядро и из ядра
Часть клетки ЦИТОПЛАЗМА
(органеллы, включения, цитозоль)
ОРГАНЕЛЛЫ
(мембранные и немембранные)
МЕМБРАННЫЕ ОРГАНЕЛЛЫ
Плазматическая мембрана Окружает клетку снаружи и входит в состав мембранных органелл. Основу мембраны составляет билипидный слой, образованный из двух слоев липидов (фосфолипиды, холестерин, гликолипиды). В липиды погружены белки, которые как бы плавают в липидном бислое. Белки могут насквозь пронизывать мембрану (интегральные), могут быть наполовину погруженными (полуинтегральные) и располагаться на поверхности липидного бислоя (примембранные). К липидам и белкам могут прикрепляться углеводы с образованием гликолипидов и гликопротеидов. Эти углеводные цепи располагаются над мембраной и получают название гликокаликса, он есть только на наружной поверхности мембраны Белки обеспечивают транспорт веществ из клетки и в клетку (транспортные), регулируют внутримембранные и внутриклеточные процессы (ферменты), выполняют рецепторную функцию (рецепторы), участвуют в организации межклеточных контактов и служат для прикрепления внутриклеточных структур к мембране (структурные). Липиды выполняют барьерную функцию, являются диэлектриком
Шероховатый (гранулярный) эндоплазматический ретикулум Система плоских мешочков — цистерн, стенка которых сделана из мембраны. К внешней поверхности мембраны прикреплены рибосомы. Они синтезируют белок, который поступает в полость ретикулума. В мембрану встроены ферменты, катализирующие присоединение и отщепление углеводов от белков, расщепляющие пептидные связи; транспортные белки, регулирующие поступление молекул белков и углеводов в полость ретикулума Синтез белка рибосомами, модификация синтезированного белка (отщепление и присоединение углеводов, отщепление кусочков полипептидной цепи), транспорт белков в комплекс Гольджи
Гладкий (агранулярный) эндоплазматический ретикулум Система трубок, стенка которых сделана из мембраны. В мембрану встроены белки синтеза липидов, разрушения ряда веществ, транспортные белки, обеспечивающие поступление веществ в полость и из полости ретикулума, регуляторные белки, которые регулируют работу транспортных белков Синтез липидов, обезвреживание некоторых токсинов, хранение ионов кальция (в основном в мышечной ткани)
Комплекс Гольджи Система плоских мембранных мешочков, сложенных наподобие стопки тарелок, и ассоциированных с ними пузырьков. Такая стопка называется диктиосомой. Их в клетке может быть от 1 до сотни. Обращенная к ядру сторона диктиосомы называется незрелой поверхностью, а к цитомембране — зрелой. В мембраны цистерн встроены ферменты, катализирующие присоединение и отсоединение углеводов от белков; углеводные рецепторы, белки, регулирующие отпочковывание и слияние транспортных пузырьков с цистернами комплекса Гольджи. Вещества попадают в комплекс Гольджи с незрелой стороны и продвигаются к зрелой, где сортируются и упаковываются в транспортные или секреторные пузырьки Модификация белков и гликопротеидов — отщепление полипептидных фрагментов от молекул белков, образование дисульфидных связей, присоединение и отщепление углеводов от молекул белков. Сортировка белков и гликопротеидов с помощью углеводных рецепторов. Формирование транспортных и секреторных пузырьков, образование лизосом, пероксисом
Митохондрии Мешочки округлой или вытянутой формы, стенка состоит из двух мембран. Наружная мембрана гладкая, обладает обычной проницаемостью. Внутренняя мембрана обладает избирательной проницаемостью, в ней есть впячивания — кристы, в нее встроены ферменты дыхательной цепи, ферментный комплекс АТФ-синтетаза, транспортные белки. Полость митохондрии заполнена матриксом, который состоит из множества ферментов (цикл Кребса, ,бета-окисление липидов и др.), рибосом, ДНК, РНК, промежуточных продуктов распада жирных кислот и углеводов Окисление жирных кислот и пирувата (продукт распада глюкозы) с одновременным синтезом молекул АТФ — окислительное фосфорилирование
Лизосомы Мешочки, стенка которых сделана из мембраны, внутри находятся гидролитические ферменты (протеазы, нуклеазы, гликозидазы, липазы, фосфолипазы, сульфатазы — более 40 ферментов), разрушающие макромолекулы — белки, углеводы и жиры до низкомолекулярных продуктов, которые могут через мембрану диффундировать в цитозоль. Внутри лизосом поддерживается кислая рН, так как ферменты активны в кислой среде. Вновь образованные лизосомы называются первичными лизосомами, фаголизосомы называются вторичными лизосомами, лизосомы с оставшимися в них непереваренными компонентами называются остаточными тельцами Расщепление биоплимеров (белков, углеводов и жиров) до мономеров (аминокислот, глицерина и жирных ксслот, моносааров), расщепление фагоцитированного материала
Пероксисомы Округлые мешочки, стенка которых сделана из мембраны, внутри находятся ферменты, генерирующие активные метаболиты кислорода — супероксид анион, гидроксильный радикал, синглетный кислород, перекись водорода (пероксидаза) и утилизирующие их избыток (каталаза). Пероксидаза использует молекулярный кислород для отщепления атомов водорода от субстратов с образованием перекиси водорода, а каталаза утилизирует перекись водорода для окисления других субстратов Расщепление органических веществ, преимущественно липидной природы, с помощью активного кислорода
Транспортные (окаймленные) пузырьки Округлые мембранные пузырьки, отшнуровываются от комплекса Гольджи, эндоплазматического ретикулума, поверхностной мембраны клетки, на наружной поверхности их мембраны имеется белок клатрин, формирующий каемку; с помощью него пузырьки могут легко отшнуровываться и сливаться с мембранами других органелл или клеточной мембраной Служат для переноса веществ от одной органеллы к другой (от комплекса Гольджи к формирующимся лизосомам и пероксисомам, перенос нейромедиаторов в нейронах), образование фагосом
НЕМЕМБРАННЫЕ ОРГАНЕЛЛЫ
Рибосомы Сложный мультиферментный комплекс, построенный из РНК и белков. Состоят из 2-х субъединиц — малой (1 молекула рРНК и 33 молекулы белков) и большой (3 молекулы рРНК и 40 белков). Имеются 2 участка, связывающие тРНК: А-участок — связывает тРНК, несущую только одну аминокислоту; Р-участок — связывает тРНК, соединенную с вновь синтезируемым пептидом. Большая и малая субъединицы соединяются вместе только на молекуле мРНК для синтеза белка Биосинтез белка
Микротрубочки Полые цилиндры, сделанные из белка тубулина (13 протофиламентов) и ассоциированных с ним белков (динеин, динактин, кинезины). Способны к самосборке-саморазборке. Динеин способен расщеплять АТФ и обеспечивает смещение микротрубочек друг относительно друга, что приводит в движение реснички и жгутики, расхождение полюсов клетки и хроматид при делении Поддержание формы клетки, участие в формировании ресничек, жгутиков, веретена деления и связанные с ними функции
Центриоли и клеточный центр Центриоль состоит из 9 триплетов микротрубочек (одна полная микротрубочка и 2 неполных; 13 и 9 протофиламентов соответственно), располагающихся по окружности. В клетке 2 центриоли, располагающиеся под прямым углом друг к другу. Клеточный центр состоит из 2-х центриолей и бесструктурной массы вокруг них — центросферы Центросфера клеточного центра — место роста всех микротрубочек клетки. Центриоли определяют плоскость деления клетки, от них растут микротрубочки веретена деления и образуются базальные тельца ресничек и жгутиков
Реснички и жгутики Состоят из 2 частей: базального тельца, расположенного в цитоплазме и состоящего из 9 триплетов микротрубочек и аксонемы — выроста над поверхностью клетки, который снаружи покрыта мембраной, а внутри имеет 9 пар микротрубочек, располагающихся по окружности, и одну пару в центре. Между соседними дуплетами имеются поперечные сшивки из белка нексина. От каждого дуплета внутрь отходит радиальная спица. К микротрубочкам центральной части присоединены белки, образующие центральную капсулу. К микротрубочкам присоединен белок динеин (см. выше) Движение клетки, направление движения жидкости над клеткой
Микрофиламенты Тонкие нити, образующие в клетке трехмерную сеть. Состоят из белка актина и ассоциированных с ним белков: фимбрин (связывает в пучки параллельно расположенные филаменты); альфа-актинин и филамин (связывают филаменты, независимо от их пространственной ориентации); винкулин (служит для прикрепления микрофиламентов к внутренней поверхности цитомембраны). Филаменты способны к сборке и разборке. В небольшом количестве в клетке встречаются миозиновые микрофиламенты, сделанные из белка миозина. Вместе с актиновыми они формируют сократительные структуры Поддержание формы клетки, опора для внутриклеточных структур, направление движения внутриклеточных процессов, движение и сокращение клетки, формирование межклеточных контактов. Регуляция функций клетки путем сигнализации от межклеточных контактов о состоянии внеклеточного матрикса
Мкроворсинки — выросты цитоплазмы длиной до 1 мкм и диаметром 0,1 мкм. В их сердцевине есть около 40 пролольно расположенных актиновых филаментов, к верхушке они прикрепляются с помощью белка винкулина, а в цитоплазме заканчиваются в терминальной сети филаментов, где есть и миозиновые филаменты
Промежуточные филаменты Толстые прочные нити толщиной 8–10 нм, образованные из белков — виментина, десмина, нейрофибриллярных белков, кератина; не способны к самосборке-разборке Поддержание формы клетки, упругость клетки, участие в формировании межклеточных контактов

Включения — необязательнве, непостоянные структуры клетки; подразделяются на: трофические (запас питательных веществ в клетке — липиды, гликоген); секреторные (секреторные продукты клетки); экскреторные (отработанные ненужные вещества, хранящиеся внутри клетки); пигментные (гемоглобин, гемосидерин, меланин, липофусцин), пигментные могут быть экзогенными (попавшие в клетку извне) и эндогенными (образовавшиеся в самой клетке)

Матрикс цитоплазмы, в котором размещены органеллы, включения и где проходит множество реакций биологического синтеза и распада (обмен азотистых оснований, углеводов, полисахаридов, жиров, белков и т.д.). Цитозоль содержит различные молекулы, включая белки, жиры, углеводы, нуклеиновые кислоты, и представляет собой коллоидную систему, которая может переходить из золя (жидкое состояние) в гель (густое состояние) и обратно

ЭНДОЦИТОЗ

  • Эндоцитоз — поглощение различных крупных веществ внутрь клетки
  • Погложение жидких компонентов называется пиноцитозом, а плотных — фагоцитозом.
  • Жидкофазный эндоцитоз, при котором — поглощаемое вещество постепенно окружается небольшим участком плазмолеммы, которая сначала впячивается, а затем отщепляется внутрь клетки, образуя внутриклеточный пузырек (фагосому), содержащий захваченный клеткой материал.
  • Абсорбционный (опосредуемый рецепторами) эндоцитоз — макромолекула сначала связываются со специальными рецепторами на поверхности клетки в области окаймленной ямки, потом возникает инвагинация мембраны и образуется особая фагоцитарная вакуоль, она называется окаймленным пузырьком. После своего образования пузырек быстро теряет свою кайму.

    Источник

    Способы обмена клетки со средой таблица гистология

    Методы исследования в гистологии включают приготовление гистологических препаратов и их изучение с помощью световых или электронных микроскопов. Гистологические препараты представляют собой мазки, отпечатки органов, пленочные препараты, тонкие срезы кусочков органов, окрашенные тем или иным красителем (исследуются также нативные — неокрашенные срезы), помещенные на предметное стекло, заключенные в бальзам и покрытые тонким покровным стеклом.

    Для изготовления гистологического препарата необходимо после взятия материала произвести его фиксацию в том или ином фиксаторе (формалине, спирте, а для электронной микроскопии — в глутаровом альдегиде и четырехокиси осмия). Делается это для предотвращения процессов аутолиза и сохранения структуры органа, близкой к прижизненной. Далее следуют этапы обезвоживания кусочка органа в спиртах возрастающей концентрации и в ксилоле с целью уплотнения тканей, что необходимо для изготовления тонких срезов. Для придания кусочку органа еще большей плотности и гомогенности, обеспечивающей высококачественную резку, проводят его заливку в органическую среду — парафин, целлоидин (для световой микроскопии) и органические смолы (эпон, аралдит, дуркупан) — для электронно-микроскопического исследования.

    Существуют также физические способы фиксации материала, наиболее распространенным из которых является быстрое замораживание кусочка органа с помощью жидко.го азота и других средств. Для резки замороженного материала используют специальные приборы — криостаты, или замораживающие микротомы.

    Толщина срезов, предназначенных для световой микроскопии, не должна превышать 4-5 мкм, для электронной — 50-60 нм (такие ультратонкие срезы изготавливают на специальном приборе ультратоме, используя стеклянные или алмазные ножи и автоматический режим резки).

    После получения срезов их помещают на предметные стекла, далее следуют этапы освобождения срезов от заливочной среды (при световой микроскопии) и окраски для придания срезам контрастности. Среди гистологических красителей наиболее часто употребляется сочетание гематоксилина, маркирующего ядро (кислотные молекулы), и эозина, избирательно окрашивающего белковые молекулы (цитоплазматический краситель).

    По окончании окрашивания срезы заключают в консервирующие среды (канадский, кедровый бальзамы) и накрываются покровным стеклом.

    Основным методом гистологического исследования клеток, тканей и органов является световая микроскопия. В световом микроскопе для освещения объекта используются лучи видимого спектра. Современные световые микроскопы позволяют получать разрешение порядка 0,2 мкм (разрешающая способность микроскопа — это то наименьшее расстояние, при котором две рядом расположенные точки видны как отдельные). Разновидности световой микроскопии — фазово-контрастная, интерференционная, поляризационная, темнопольная и др.

    Фазово-контрастная микроскопия — метод изучения клеток в световом микроскопе, снабженном фазово-контрастным устройством. Благодаря смещению фаз световых волн в микроскопе такой конструкции повышается контрастность структур исследуемого объекта, что позволяет изучать живые клетки.

    Интерференционная микроскопия. В интерференционном микроскопе падающие на объект световые пучки раздваиваются — один пучок проходит через объект, другой — идет мимо. При последующем воссоединении пучков возникает интерференционное изображение объекта. По сдвигу фаз одного пучка относительно другого можно судить о концентрациях различных веществ в исследуемом объекте.

    Поляризационная микроскопия. В микроскопах этого типа световой пучок разлагается на два луча, поляризованных во взаимно перпендикулярных плоскостях. Проходя через структуры ткани со строгой ориентацией молекул, лучи запаздывают друг относительно друга вследствие неодинакового их преломления. Возникающий при этом сдвиг фаз является показателем двойного лучепреломления клеточных структур (таким способом были исследованы, например, миофибриллы).

    Источник

    Читайте также:  Производный способ приобретения вещи
    Оцените статью
    Разные способы