- Передача данных и виды связи
- Последовательный метод передачи информации
- Скорость обмена данными
- Управление потоком
- Режимы связи
- Симплексная связь
- Полудуплексная связь
- Дуплексная связь
- Тема 2.2. Способы обмена информацией между устройствами .
- Лекция на тему: Передача информации между компьютерами. Проводная и беспроводная связь. (СПО)
Передача данных и виды связи
Передача данных играет очень большую роль в электронике.
В прошлых статьях по цифровой электронике я рассказывал о цифровых сигналах. Чем же так хороши эти цифровые сигналы? Как это бы странно не звучало, но цифровые сигналы по своей природе являются аналоговыми, так как передаются путем изменения значения напряжения или тока, но передают сигналы с ранее оговоренными уровнями. По своей сути, они являются дискретными сигналами. А что означает слово «дискретный»? Дискретный — это значит состоящий из отдельных частей, раздельный, прерывистый. Цифровые сигналы относятся как раз к дискретным сигналам, так как имеют только ДВА СОСТОЯНИЯ: «активно» и «не активно» — «есть напряжение/ток» и «нет напряжения/тока».
Главный плюс цифровых сигналов в том, что их проще передавать и обрабатывать. Для передачи чаще всего используют напряжение. Поэтому, принято два состояния: напряжение близко к нулю (менее 10% от значения напряжения) и напряжение близко к напряжению питания (более 65% от значения). Например, при напряжении питания схемы 5 Вольт мы получаем сигнал с напряжением 0,5 Вольт — «ноль», если же 4,1 Вольта — «единица».
Последовательный метод передачи информации
Есть просто два провода, источник электрического сигнала и приемник электрического сигнала, которые цепляются к этим проводам.
Это ФИЗИЧЕСКИЙ УРОВЕНЬ.
Как мы уже сказали, по этим двум проводам мы можем передавать только два сигнала: «есть напряжение/ток» и «нет напряжения/тока». Какие способы передачи информации мы можем реализовать?
Самый простой способ — сигнал есть (лампочка горит) — это ЕДИНИЧКА, сигнала нет (лампочка не горит) — это НОЛЬ
Если пораскинуть мозгами, можно придумать еще несколько различных комбинаций. Например, широкий импульс принять за единичку, а узкий — за ноль:
Или даже вообще взять за единичку и ноль фронт и срез импульса. Внизу рисунок, если подзабыли, что такое фронт и срез импульса.
А вот и практическая реализация:
Да можно хоть сколько придумать различных комбинаций, если «получатель» и «отправитель» согласуют прием и передачу. Здесь я привел просто самые популярные способы передачи цифрового сигнала. То есть все эти способы и есть ПРОТОКОЛЫ. И их, как я уже сказал, можно напридумывать очень много.
Скорость обмена данными
Представьте себе картину… Студенты, идет лекция… Преподаватель диктует лекцию, а студенты ее записывают
Но если преподаватель очень быстро диктует лекцию и в придачу эта лекция по физике или матанализу, то в результате получаем:
Почему же так произошло?
С точки зрения цифровой передачи данных, можно сказать, что скорость обмена данными между «Отправителем» и «Получателем» разная. Поэтому, может быть реальна ситуация, когда «Получатель» (студент) не в состоянии принять данные от «Отправителя» (преподавателя) из-за несоответствия скорости передачи данных: скорость передачи может быть выше или ниже той, на которую настроен приемник (студент).
Данная проблема в разных стандартах последовательной передачи данных решается по-разному:
- предварительная договоренность о скорости передачи данных (договориться с преподавателем, чтобы диктовал лекцию медленнее или чуть быстрее);
- перед передачей информации «Отправитель» передает некую служебную информацию, используя которую «Получатель» подстраивается под «Отправителя» ( Преподаватель: «Кто не запишет эту лекцию полностью, тот не получит зачет»)
Чаще всего, используется первый способ: в устройствах связи заранее устанавливается необходимая скорость обмена данными. Для этого используется тактовый генератор, который вырабатывает импульсы для синхронизации всех узлов устройства, а также для синхронизации процесса связи между устройствами.
Управление потоком
Также возможна ситуация, когда «Получатель»(студент) не готов принимать передаваемые «Отправителем»(преподавателем) данные по какой-либо причине: занятость, неисправность и др.
Решается эта проблема различными методами:
1) На уровне протоколов. Например, в протоколе обмена оговорено: после передачи «Отправителем» служебного сигнала «начало передачи данных» в течение определенного времени «Получатель» обязан подтвердить принятие этого сигнала путем передачи специального служебного сигнала «готовность к приему».
Данный способ называют «программным управлением потоком» — «Soft»
2) На физическом уровне — используются дополнительные каналы связи, по которым «Отправитель» ДО передачи информации запрашивает у «Получателя» о его готовности к приему). Такой способ называют «аппаратным управлением потоком» — «Hard»;
Оба метода очень распространены. Иногда они используются одновременно: и на физическом уровне, и на уровне протокола обмена.
При передаче информации важно засинхронизировать работу передатчика и приемника. Способ установки режима связи между устройствами называют «синхронизацией». Только в этом случае «Получатель» может правильно (достоверно) принять переданное «Отправителем» сообщение.
Режимы связи
Симплексная связь
В этом случае Получатель может только принимать сигналы от отправителя и никак не может на него повлиять. Это в основном телевидение или радио. Мы можем их только или смотреть или слушать.
Полудуплексная связь
В этом режиме и отправитель и получатель могут передавать друг другу сигналы поочередно, если канал свободен. Отличный пример полудуплексной связи — это рации. Если оба абонента будут трещать каждый в свою рацию одновременно, то никто никого не услышит.
— Первый, первый. Я второй. Как слышно?
— Слышу вас нормально, отбой!
Сигнал может посылать только отправитель, в этом случае получатель его принимает. Либо сигнал может отправлять получатель, а в этом случае отправитель его получает. То есть и отправитель и получатель имеют равные права на доступ к каналу (линии связи). Если они сразу оба будут передавать сигнал в линию, то, как я уже сказал, ничего из этого не получится.
Дуплексная связь
В этом режиме и прием и передача сигнала могут вестись сразу в двух направлениях одновременно. Яркий тому пример — разговор по мобильному или домашнему телефону, или разговор в Skype.
Источник
Тема 2.2. Способы обмена информацией между устройствами .
План
· Канал обмена информацией.
· Параллельный и последовательный способы обмена информацией между устройствами.
Сразу же оговоримся, что под интерфейсами персонального компьютера в данном случае имеются в виду только внешние интерфейсы, то есть средства сопряжения с внешними по отношению к компьютеру в целом устройствами. При этом внешние устройства могут быть как стандартными (например, принтер или модем), так и нестандартными (например, измерительные и управляющие модули, приборы, установки).
В настоящее время компьютеры могут иметь множество внешних интерфейсов. Наиболее распространены следующие:
· системная шина (магистраль) ISA;
· шина PC Cards (старое название PCMCIA) — обычно только в ноутбуках;
· параллельный порт (принтерный, LPT-порт) Centronics;
· последовательный порт (COM-порт) RS-232C;
· последовательный порт USB (Universal Serial Bus);
· последовательный инфракрасный порт IrDA.
Кроме того, компьютеры могут иметь разъемы для подключения внешнего монитора, клавиатуры, мыши. Некоторые компьютеры имеют встроенные модемы и сетевые адаптеры, тогда они располагают, соответственно, телефонным и сетевым внешними интерфейсами.
Подключение стандартных внешних устройств обычно не вызывает никаких проблем: надо только присоединить устройство к компьютеру соответствующим стандартным кабелем и (возможно) установить на компьютер программный драйвер. Знать особенности внешних интерфейсов пользователю в данном случае не обязательно. В случае инфракрасного порта не нужен даже кабель.
Гораздо сложнее ситуация, когда к компьютеру требуется присоединить нестандартное внешнее устройство. В этом случае необходимо доскональное знание особенностей используемых интерфейсов и умение эффективно с ними работать. Ограниченный объем книги не позволяет полностью рассмотреть данный вопрос, поэтому мы остановимся только на общем описании некоторых внешних интерфейсов компьютера.
Чаще всего для подключения нестандартных внешних устройств используются системная магистраль ISA, параллельный интерфейс Centronics (LPT) и последовательный интерфейс RS-232C (COM).
Системная магистраль ISA
Системная шина (магистраль) ISA была разработана специально для персональных компьютеров типа IBM PC AT и является фактическим стандартом. В то же время, отсутствие официального международного статуса магистрали ISA (она не утверждена в качестве стандарта ни одним международным комитетом по стандартизации) приводит к тому, что многие производители допускают некоторые отклонения от фирменного стандарта.
ISA явилась расширением магистрали компьютеров IBM PC и IBM PC XT. В ней было увеличено количество разрядов адреса и данных, увеличено число линий аппаратных прерываний и каналов ПДП, а также повышена тактовая частота. К 62-контактному разъему прежней магистрали был добавлен 36-контактный новый разъем. Тем не менее, совместимость была сохранена, и платы, предназначенные для IBM PC XT, годятся и для IBM PC AT. Характерное отличие ISA состоит в том, что ее тактовый сигнал не совпадает с тактовым сигналом процессора, как это было в IBM PC XT, поэтому скорость обмена по ней не пропорциональна тактовой частоте процессора.
Магистраль ISA относится к немультиплексированным (то есть имеющим раздельные шины адреса и данных) 16-разрядным системным магистралям среднего быстродействия. Обмен осуществляется 8-ми или 16-ти разрядными данными. На магистрали реализован раздельный доступ к памяти компьютера и к устройствам ввода/вывода (для этого имеются специальные сигналы). Максимальный объем адресуемой памяти составляет 16 Мбайт (24 адресные линии). Максимальное адресное пространство для устройств ввода/вывода — 64 Кбайт (16 адресных линий), хотя практически все выпускаемые платы расширения используют только 10 младших адресных линий (1 Кбайт). Магистраль поддерживает регенерацию динамической памяти, радиальные прерывания и прямой доступ к памяти. Допускается также захват магистрали.
Разъем магистрали ISA разделен на две части, что позволяет уменьшать размеры 8-разрядных плат расширения, а также использовать платы, разработанные для компьютеров IBM PC XT. Внешний вид плат расширения показан на рис. 8.1. Назначение контактов разъемов представлено в табл. 8.1 и 8.2. На магистрали присутствуют четыре напряжения питания: +5 В, –5 В, +12 В и –12 В, которые могут использоваться платами расширения.
Рис. 8.1. Нумерация контактов разъема ISA (для IBM PC XT — только А1 . А31 и В1 . В31).
В роли задатчика (Master) магистрали могут выступать процессор, контроллер ПДП, контроллер регенерации или другое устройство. Исполнителями (Slave) могут быть системные устройства компьютера, подключенные к ISA, или платы (карты) расширения.
Наиболее распространенное конструктивное исполнение магистрали — разъемы (слоты), все одноименные контакты которых параллельно соединены между собой, то есть все разъемы абсолютно равноправны. В слоты устанавливаются платы расширения, которые оснащены интерфейсными разъемами магистрали, выполненными печатными проводниками на краю платы. Количество установочных мест для плат расширения зависит от типа корпуса компьютера и составляет обычно от 2 до 8 и даже более.
В таблицах 8.1 и 8.2 знак минус перед названием сигнала говорит о том, что активному (рабочему) уровню сигнала соответствует низкий уровень напряжения на соответствующей линии магистрали. На линиях адреса и данных логическому нулю соответствует низкий уровень напряжения, а единице — высокий (то есть логика положительная).
Таблица 8.1. Назначение контактов разъема магистрали ISA (продолжение в Табл. 8.2).
Источник
Лекция на тему: Передача информации между компьютерами. Проводная и беспроводная связь. (СПО)
Тема: Передача информации между компьютерами. Проводная и беспроводная связь.
Есть три основных способа организации межкомпьютерной связи :
объединение двух рядом расположенных компьютеров посредством специального кабеля ;
передача данных от одного компьютера к другому посредством модема с помощью проводных, беспроводных или спутниковых линий связи;
объединение компьютеров в компьютерную сеть
Часто при организации связи между двумя компьютерами за одним компьютером закрепляется роль поставщика ресурсов (программ, данных и т.д.), а за другим — роль пользователя этих ресурсов . В этом случае первый компьютер называется сервером , а второй — клиентом или рабочей станцией. Работать можно только на компьютере-клиенте под управлением специального программного обеспечения.
Сервер (англ. serve — обслуживать) — это высокопроизводительный компьютер с большим объёмом внешней памяти, который обеспечивает обслуживание других компьютеров путем управления распределением дорогостоящих ресурсов совместного пользования (программ, данных и периферийного оборудования).
Клиент (иначе, рабочая станция) — любой компьютер, имеющий доступ к услугам сервера.
Компьютерная сеть (англ. ComputerNetWork, от net — сеть, и work — работа) — это система обмена информацией между компьютерами.
Пользователи компьютерной сети получают возможность совместно использовать её программные, технические, информационные и организационные ресурсы.
Компьютерная сеть представляет собой совокупность узлов (компьютеров, рабочих станций и др.) и соединяющих их ветвей.
Ветвь сети — это путь, соединяющий два смежных узла.
Узлы сети бывают трёх типов:
оконечный узел — расположен в конце только одной ветви;
промежуточный узел — расположен на концах более чем одной ветви;
смежный узел — такие узлы соединены по крайней мере одним путём, не содержащим никаких других узлов.
Компьютеры могут объединяться в сеть разными способами. Способ соединения компьютеров в сеть называется её топологией .
Наиболее распространенные виды топологий сетей:
Линейная сеть (Шина). Содержит только два оконечных узла, любое число промежуточных узлов и имеет только один путь между любыми двумя узлами.
Кольцевая сеть. Сеть, в которой к каждому узлу присоединены две и только две ветви.
Древовидная сеть. Сеть, которая содержит более двух оконечных узлов и по крайней мере два промежуточных узла, и в которой между двумя узлами имеется только один путь.
Звездообразная сеть. Сеть, в которой имеется только один промежуточный узел.
Ячеистая сеть. Сеть, которая содержит по крайней мере два узла, имеющих два или более пути между ними.
Полносвязанная сеть. Сеть, в которой имеется ветвь между любыми двумя узлами.
Важнейшая характеристика компьютерной сети — её архитектура.
В современном мире, переживающем информационный бум, всё большее значение приобретает проводная связь — телефония и интернет, которая позволяет людям не только общаться друг с другом на огромном расстоянии, но и пересылать за какие-то доли секунды огромные объёмы информации.
Существует несколько типов проводных линий связи :
медная витая пара проводов
волоконно-оптическая линия связи
Самой распространённой, дешёвой и простой в монтаже и последующем техническом обслуживании является витая пара. Волоконно-оптическая линия связи, напротив, является наиболее сложной и дорогостоящей.
Несмотря на бурное развитие в последние годы всевозможных средств беспроводной связи, таких, как мобильные или спутниковые телефоны, проводная связь, видимо, будет сохранять свои позиции ещё долгое время.
Основными преимуществами проводной связи перед беспроводной являются простота устройства линий связи и стабильность передаваемого сигнала (качество которого, например, практически не зависит от погодных условий).
Прокладка проводных (кабельных) линий связи для предоставления услуг телефонии и интернет, связана со значительными материальными затратами, а также представляет собой весьма трудоёмкий процесс. Однако, несмотря на подобные сложности, инфраструктура проводной связи постоянно обновляется и совершенствуется.
Беспроводные сетевые технологии группируются в три типа, различающиеся по масштабу действия их радиосистем, но все они с успехом применяются в бизнесе.
1. PAN (персональные сети) — короткодействующие, радиусом до 10 м сети, которые связывают ПК и другие устройства — КПК, мобильные телефоны, принтеры и т. п. С помощью таких сетей реализуется простая синхронизация данных, устраняются проблемы с обилием кабелей в офисах, реализуется простой обмен информацией в небольших рабочих группах. Наиболее перспективный стандарт для PAN — это Bluetooth.
2. WLAN (беспроводные локальные сети) — радиус действия до 100 м. С их помощью реализуется беспроводной доступ к групповым ресурсам в здании, университетском кампусе и т. п. Обычно такие сети используются для продолжения проводных корпоративных локальных сетей. В небольших компаниях WLAN могут полностью заменить проводные соединения. Основной стандарт для WLAN — 802.11.
3. WWAN (беспроводные сети широкого действия) — беспроводная связь, которая обеспечивает мобильным пользователям доступ к их корпоративным сетям и Интернету.
На современном этапе развития сетевых технологий, технология беспроводных сетей Wi-Fi является наиболее удобной в условиях требующих мобильность, простоту установки и использования. Wi-Fi (от англ. wirelessfidelity — беспроводная связь) — стандарт широкополосной беспроводной связи, разработанный в 1997г. Как правило, технология Wi-Fi используется для организации беспроводных локальных компьютерных сетей, а также создания так называемых горячих точек высокоскоростного доступа в Интернет. Будущее развития телекоммуникационных услуг в немалой степени заключается в грамотном сочетании проводной и беспроводной связи, где каждый вид связи будет использоваться там, где это наиболее оптимально.
Контрольные вопросы и задания
Дайте определение компьютерной сети, серверу.
Что такое рабочая станция.
Перечислите основные типы узлов сети и опишите их.
Какие типы проводных линей связи вы знаете?
Оформите в виде таблицы типы беспроводные сетевые технологии. Таблица должна содержать два столбца (название типа и его описание).
Источник