Способы обхода дерева поиска

Дерево

Дерево – структура данных, представляющая собой древовидную структуру в виде набора связанных узлов.

Бинарное дерево — это конечное множество элементов, которое либо пусто, либо содержит элемент ( корень ), связанный с двумя различными бинарными деревьями, называемыми левым и правым поддеревьями . Каждый элемент бинарного дерева называется узлом . Связи между узлами дерева называются его ветвями .

Способ представления бинарного дерева:

  • A — корень дерева
  • В — корень левого поддерева
  • С — корень правого поддерева

Корень дерева расположен на уровне с минимальным значением.

Узел D , который находится непосредственно под узлом B , называется потомком B . Если D находится на уровне i , то B – на уровне i-1 . Узел B называется предком D .

Максимальный уровень какого-либо элемента дерева называется его глубиной или высотой .

Если элемент не имеет потомков, он называется листом или терминальным узлом дерева.

Остальные элементы – внутренние узлы (узлы ветвления).

Число потомков внутреннего узла называется его степенью . Максимальная степень всех узлов есть степень дерева.

Число ветвей, которое нужно пройти от корня к узлу x , называется длиной пути к x . Корень имеет длину пути равную 0 ; узел на уровне i имеет длину пути равную i .

Бинарное дерево применяется в тех случаях, когда в каждой точке вычислительного процесса должно быть принято одно из двух возможных решений.

Имеется много задач, которые можно выполнять на дереве.

Распространенная задача — выполнение заданной операции p с каждым элементом дерева. Здесь p рассматривается как параметр более общей задачи посещения всех узлов или задачи обхода дерева.

Если рассматривать задачу как единый последовательный процесс, то отдельные узлы посещаются в определенном порядке и могут считаться расположенными линейно.

Способы обхода дерева

Пусть имеем дерево, где A — корень, B и C — левое и правое поддеревья.

Существует три способа обхода дерева:

  • Обход дерева сверху вниз (в прямом порядке): A, B, C — префиксная форма.
  • Обход дерева в симметричном порядке (слева направо): B, A, C — инфиксная форма.
  • Обход дерева в обратном порядке (снизу вверх): B, C, A — постфиксная форма.

Реализация дерева

Узел дерева можно описать как структуру:

При этом обход дерева в префиксной форме будет иметь вид

Обход дерева в инфиксной форме будет иметь вид

Обход дерева в постфиксной форме будет иметь вид

Бинарное (двоичное) дерево поиска – это бинарное дерево, для которого выполняются следующие дополнительные условия (свойства дерева поиска):

  • оба поддерева – левое и правое, являются двоичными деревьями поиска;
  • у всех узлов левого поддерева произвольного узла X значения ключей данных меньше, чем значение ключа данных самого узла X ;
  • у всех узлов правого поддерева произвольного узла X значения ключей данных не меньше, чем значение ключа данных узла X .

Данные в каждом узле должны обладать ключами, на которых определена операция сравнения меньше.

Как правило, информация, представляющая каждый узел, является записью, а не единственным полем данных.

Для составления бинарного дерева поиска рассмотрим функцию добавления узла в дерево.

Добавление узлов в дерево

Удаление поддерева

Пример Написать программу, подсчитывающую частоту встречаемости слов входного потока.

Поскольку список слов заранее не известен, мы не можем предварительно упорядочить его. Неразумно пользоваться линейным поиском каждого полученного слова, чтобы определять, встречалось оно ранее или нет, т.к. в этом случае программа работает слишком медленно.

Читайте также:  Социальная психология конфликт способы разрешения

Один из способов — постоянно поддерживать упорядоченность уже полученных слов, помещая каждое новое слово в такое место, чтобы не нарушалась имеющаяся упорядоченность. Воспользуемся бинарным деревом.

В дереве каждый узел содержит:

  • указатель на текст слова;
  • счетчик числа встречаемости;
  • указатель на левого потомка;
  • указатель на правого потомка.

Рассмотрим выполнение программы на примере фразы

now is the time for all good men to come to the aid of their party

При этом дерево будет иметь следующий вид

Результат выполнения

Источник

Обход двоичного дерева

Обход дерева в глубину

В отличие от линейных структур типа односвязного списка и массива, у которых есть каноничный, прямой способ обхода, деревья можно обходить несколькими способами, в зависимости от поставленной задачи. Начиная с корня, можно применять необходимое действия (именуемое в дальнейшем «визит») как к самому узлу, так и к его левой или правой ветви. Порядок, в котором операции применяются, и будет определять способ обхода.

Наиболее простыми и понятными являются рекурсивные алгоритмы. При сведении к итеративному алгоритму, так как дерево предполагает несколько путей обхода, часть узлов придётся «откладывать» для дальнейшей обработки, для чего будут использоваться стек или очередь.

Существует три основных способа обхода в глубину.

    Прямой (pre-order)
    Посетить корень
    Обойти левое поддерево
    Обойти правое поддерево

Рекурсивное решение полностью соответствует описанию алгоритма

Переделаем функции, чтобы они могли работать с узлами. Для этого понадобится передавать функцию, которая могла бы работать с узлом и получать дополнительные параметры. Эти параметры будут передаваться указателем типа void. Если нам понадобится передать параметры, всегда можно будет их передать указателем на структуру.

В качестве функции visit можно передавать, например, такую функцию

Рассмотрим теперь результат каждого из обходов.

inOrderTraversal выводит сначала самый левый узел, потом средний, потом правый. Если слева находилось дерево, то алгоритм применяется к нему рекурсивно. Если мы обрабатываем двоичное дерево поиска, то самым левым будет самый маленький элемент, самым правым и самым последним при обработке будет самый большой элемент. Симметричный обход выведет дерево в отсортированном по возрастанию виде. Для того, чтобы отсортировать дерево в обратном порядке, нужно сначала обработать правую ветвь, то есть функция

выведет дерево в обратном порядке.

postOrderTraversal выводит узлы слева направо, снизу вверх. Это имеет ряд применений, сейчас рассмотрим только одно – удаление дерева. Обход дерева начинается снизу, с узлов, у которых нет родителей. Их можно безболезненно удалять, так как обращение root->left и root->right происходят до удаления объекта.

Напомню, что если мы хотим изменить указатель, то нужно передавать указатель на указатель.

Итеративная реализация обхода в глубину требует использования стека. Он нужен для того, чтобы «откладывать» на потом обработку некоторых узлов (например тех, у кого есть необработанные наследники, или всех левых улов и т.д.).

Реализовывать стек будем с помощью массива, который при переполнении будет изменять свой размер. Напомню, что реализация стека требует двух функций — push, которая кладёт значение на вершину стека и pop, которая снимает значение с вершины стека и возвращает его. Кроме того, будем использовать функцию peek, которая возвращает значение с вершины, но не удаляет его.

После того, как у нас готова реализация стека, напишем обходы.

Обход в ширину

О бход в ширину подразумевает, что сначала мы посещаем корень, затем, слева направо, все ветви первого уровня, затем все ветви второго уровня и т.д.

Читайте также:  Способы получения пластмасс презентация

Пусть мы находимся в корне дерева. Далее необходимо посетить всех наследников корня. Таким образом, нужно засунуть в контейнер сначала узел, затем его наследников, при этом узел далее должен быть обработан первым. То есть, элемент, который вошёл первым должен быть обработан первым. Это очередь, и в этом примере мы будем использовать готовую реализацию очереди с помощью двусвязного списка.

Реализация на си

Заменим очередь на стек

Теперь функция обходит узлы как Post-Order, только задом наперёд.

Обход бесконечных деревьев

Б ывают ситуации, когда необходимо обработать бесконечное дерево. Дерево может генерироваться, когда мы обращаемся к нему (например, мы обходим сайт, страницы которого генерируются сервером во время обращения), либо его размер просто не известен (и возможно велик).

Если дерево растёт бесконечно в глубину, то его можно обрабатывать, используя проход в ширину. То есть, известно, что если спускаться вниз по ветви, то до конца мы не дойдём, но на данном уровне дерево имеет конечный размер.

Если дерево растёт бесконечно в ширину, но при этом имеет конечную глубину (то есть, у узла не два наследника, а из бесконечно много), то можно использовать поиск в глубину.

Обработку бесконечного дерева можно заканчивать например, когда обработано достаточно большое количество узлов или их значения достигли какой-то величины.

Пусть робот «шмугл» индексирует страницы на сайте. Количество ссылок на странице конечно. (т.к. страница конечна). То есть можно рассматривать страницы как узел, ссылки с которой ведут к другим узлам. Конечно, есть ссылки, которые ведут на предыдущие страницы, есть кросс-ссылки между страницами на одном уровне вложенности и т.д., сейчас всех тонкостей рассматривать не будем. То есть, есть дерево, у каждого узла которого конечное число наследников. В лучшем случае количество ссылок конечно и охватывает весь сайт. Однако, может попасться страница, на которой есть календарь, ссылки с которого генерируются автоматически. Программист забыл, что ссылки в будущее надо запретить, поэтому в глубину мы получаем бесконечно дерево, каждый новый узел которого генерируется автоматически. Обход этого дерева закончится, например, когда будет забит канал или превышен лимит по ссылкам.

Источник

Обход бинарных деревьев: рекурсия, итерации и указатель на родителя

Основы о бинарных деревьях представлены, в том числе, здесь . Добавлю свои «5 копеек» и данным постом систематизирую материалы, связанные с обходом бинарных деревьев, а именно сравнений возможностей рекурсии и итераций, а также обсуждение возможностей использования указателя на родительский узел.

Итак… язык Java, класс узла имеет следующий вид:

Примечание: Указатель на родителя parent – как правило не имеет большого смысла, однако, как следует из заголовка и будет показано, может быть полезен в ряде случаев.

Обход деревьев – последовательная обработка (просмотр, изменение и т.п.) всех узлов дерева, при котором каждый узел обрабатывается строго один раз. При этом получается линейная расстановка узлов дерева.

В зависимости от траекторий выделяют два типа обхода:
— горизонтальный (в ширину); и
— вертикальный (в глубину).

Горизонтальный обход подразумевает обход дерева по уровням (level-ordered) – вначале обрабатываются все узлы текущего уровня, после чего осуществляется переход на нижний уровень.

При вертикальном обходе порядок обработки текущего узла и узлов его правого и левого поддеревьев варьирует и по этому признаку выделяют три варианта вертикального обхода:
— прямой (префиксный, pre-ordered): вершина – левое поддерево – правое поддерево;
— обратный (инфиксный, in-ordered): левое поддерево – вершина – правое поддерево; и
— концевой (постфиксный, post-ordered): левое поддерево – правое поддерево – вершина.

Сам обход во всех случаях в принципе один и тот же, различается порядок обработки. Для представления в каком порядке будет проходить обработка узлов дерева удобно следовать по «контуру обхода». При прямом обходе узел будет обработан в точке слева от узла, при обратном снизу от узла и при концевом, соответственно, справа от узла.
Другими словами «находясь» в некотором узле, нам нужно знать, нужно ли его обрабатывать и куда двигаться дальше.

Читайте также:  Каким способом размножается топинамбур

Рекурсия

Все три варианта вертикального обхода элементарно реализуются рекурсивными функциями.

Рекурсия крайне удобна не только при обходе, но также при построении дерева, поиска в дереве, а также балансировки. Однако рекурсией нельзя осуществить горизонтальный обход дерева. В этом случае, а так же при обеспокоенности перегрузкой программного стека, следует применять итерационный подход.

Контейнеры

В случае использования итераций необходимо хранить сведенья о посещенных, но не обработанных узлах. Используются контейнеры типа стек (для вертикального обхода) и очередь (для горизонтального обхода).

Горизонтальный обход:

обрабатываем первый в очереди узел, при наличии дочерних узлов заносим их в конец очереди. Переходим к следующей итерации.

Вертикальный прямой обход:

обрабатываем текущий узел, при наличии правого поддерева добавляем его в стек для последующей обработки. Переходим к узлу левого поддерева. Если левого узла нет, переходим к верхнему узлу из стека.

Вертикальный обратный обход:

из текущего узла «спускаемся» до самого нижнего левого узла, добавляя в стек все посещенные узлы. Обрабатываем верхний узел из стека. Если в текущем узле имеется правое поддерево, начинаем следующую итерацию с правого узла. Если правого узла нет, пропускаем шаг со спуском и переходим к обработке следующего узла из стека.

Вертикальный концевой обход:

Здесь ситуация усложняется – в отличие от обратного обхода, помимо порядка спуска нужно знать обработано ли уже правое поддерево. Одним из вариантов решения является внесение в каждый экземпляр узла флага, который бы хранил соответствующую информацию (не рассматривается). Другим подходом является «кодирование» непосредственно в очередности стека — при спуске, если у очередного узла позже нужно будет обработать еще правое поддерево, в стек вносится последовательность «родитель, правый узел, родитель». Таким образом, при обработке узлов из стека мы сможем определить, нужно ли нам обрабатывать правое поддерево.

Об указателе на родителя

Наличие в экземпляре класса указателя на родителя приносит определенные хлопоты при построении и балансировки деревьев. Однако, возможность из произвольного узла дерева «дойти» до любого из его узлов может придтись весьма кстати. Все, за чем нужно следить при «подъеме» на верхний уровень – пришли ли от правого потомка или от левого.
Так, с использованием родительских указателей будет выглядеть код вертикального концевого обхода.

Другой класс задач, которые позволяет решить родительский указатель, как уже было упомянуто — перемещение внутри дерева.
Так, что бы перейти на n-ый по счету узел от текущего узла, без «ориентации в дереве» пришлось бы обходить дерево с самого начала, до известного узла, а потом еще n-узлов. С использованием же родительского указателя при обратном обходе дерева перемещение на steps узлов от текущего узла (start) будет иметь следующий вид.

Примечание: В общем случае также требуется предотвратить возможность попытки выхода за пределы дерева (подняться выше корневого узла).

Источник

Оцените статью
Разные способы