Способы обхода бинарного дерева

Дерево

Дерево – структура данных, представляющая собой древовидную структуру в виде набора связанных узлов.

Бинарное дерево — это конечное множество элементов, которое либо пусто, либо содержит элемент ( корень ), связанный с двумя различными бинарными деревьями, называемыми левым и правым поддеревьями . Каждый элемент бинарного дерева называется узлом . Связи между узлами дерева называются его ветвями .

Способ представления бинарного дерева:

  • A — корень дерева
  • В — корень левого поддерева
  • С — корень правого поддерева

Корень дерева расположен на уровне с минимальным значением.

Узел D , который находится непосредственно под узлом B , называется потомком B . Если D находится на уровне i , то B – на уровне i-1 . Узел B называется предком D .

Максимальный уровень какого-либо элемента дерева называется его глубиной или высотой .

Если элемент не имеет потомков, он называется листом или терминальным узлом дерева.

Остальные элементы – внутренние узлы (узлы ветвления).

Число потомков внутреннего узла называется его степенью . Максимальная степень всех узлов есть степень дерева.

Число ветвей, которое нужно пройти от корня к узлу x , называется длиной пути к x . Корень имеет длину пути равную 0 ; узел на уровне i имеет длину пути равную i .

Бинарное дерево применяется в тех случаях, когда в каждой точке вычислительного процесса должно быть принято одно из двух возможных решений.

Имеется много задач, которые можно выполнять на дереве.

Распространенная задача — выполнение заданной операции p с каждым элементом дерева. Здесь p рассматривается как параметр более общей задачи посещения всех узлов или задачи обхода дерева.

Если рассматривать задачу как единый последовательный процесс, то отдельные узлы посещаются в определенном порядке и могут считаться расположенными линейно.

Способы обхода дерева

Пусть имеем дерево, где A — корень, B и C — левое и правое поддеревья.

Существует три способа обхода дерева:

  • Обход дерева сверху вниз (в прямом порядке): A, B, C — префиксная форма.
  • Обход дерева в симметричном порядке (слева направо): B, A, C — инфиксная форма.
  • Обход дерева в обратном порядке (снизу вверх): B, C, A — постфиксная форма.

Реализация дерева

Узел дерева можно описать как структуру:

При этом обход дерева в префиксной форме будет иметь вид

Обход дерева в инфиксной форме будет иметь вид

Обход дерева в постфиксной форме будет иметь вид

Бинарное (двоичное) дерево поиска – это бинарное дерево, для которого выполняются следующие дополнительные условия (свойства дерева поиска):

  • оба поддерева – левое и правое, являются двоичными деревьями поиска;
  • у всех узлов левого поддерева произвольного узла X значения ключей данных меньше, чем значение ключа данных самого узла X ;
  • у всех узлов правого поддерева произвольного узла X значения ключей данных не меньше, чем значение ключа данных узла X .

Данные в каждом узле должны обладать ключами, на которых определена операция сравнения меньше.

Как правило, информация, представляющая каждый узел, является записью, а не единственным полем данных.

Для составления бинарного дерева поиска рассмотрим функцию добавления узла в дерево.

Добавление узлов в дерево

Удаление поддерева

Пример Написать программу, подсчитывающую частоту встречаемости слов входного потока.

Поскольку список слов заранее не известен, мы не можем предварительно упорядочить его. Неразумно пользоваться линейным поиском каждого полученного слова, чтобы определять, встречалось оно ранее или нет, т.к. в этом случае программа работает слишком медленно.

Один из способов — постоянно поддерживать упорядоченность уже полученных слов, помещая каждое новое слово в такое место, чтобы не нарушалась имеющаяся упорядоченность. Воспользуемся бинарным деревом.

В дереве каждый узел содержит:

  • указатель на текст слова;
  • счетчик числа встречаемости;
  • указатель на левого потомка;
  • указатель на правого потомка.

Рассмотрим выполнение программы на примере фразы

now is the time for all good men to come to the aid of their party

При этом дерево будет иметь следующий вид

Результат выполнения

Источник

Обход двоичного дерева

Обход дерева в глубину

В отличие от линейных структур типа односвязного списка и массива, у которых есть каноничный, прямой способ обхода, деревья можно обходить несколькими способами, в зависимости от поставленной задачи. Начиная с корня, можно применять необходимое действия (именуемое в дальнейшем «визит») как к самому узлу, так и к его левой или правой ветви. Порядок, в котором операции применяются, и будет определять способ обхода.

Наиболее простыми и понятными являются рекурсивные алгоритмы. При сведении к итеративному алгоритму, так как дерево предполагает несколько путей обхода, часть узлов придётся «откладывать» для дальнейшей обработки, для чего будут использоваться стек или очередь.

Существует три основных способа обхода в глубину.

    Прямой (pre-order)
    Посетить корень
    Обойти левое поддерево
    Обойти правое поддерево

Рекурсивное решение полностью соответствует описанию алгоритма

Читайте также:  Способ готовки ямы для ближнего

Переделаем функции, чтобы они могли работать с узлами. Для этого понадобится передавать функцию, которая могла бы работать с узлом и получать дополнительные параметры. Эти параметры будут передаваться указателем типа void. Если нам понадобится передать параметры, всегда можно будет их передать указателем на структуру.

В качестве функции visit можно передавать, например, такую функцию

Рассмотрим теперь результат каждого из обходов.

inOrderTraversal выводит сначала самый левый узел, потом средний, потом правый. Если слева находилось дерево, то алгоритм применяется к нему рекурсивно. Если мы обрабатываем двоичное дерево поиска, то самым левым будет самый маленький элемент, самым правым и самым последним при обработке будет самый большой элемент. Симметричный обход выведет дерево в отсортированном по возрастанию виде. Для того, чтобы отсортировать дерево в обратном порядке, нужно сначала обработать правую ветвь, то есть функция

выведет дерево в обратном порядке.

postOrderTraversal выводит узлы слева направо, снизу вверх. Это имеет ряд применений, сейчас рассмотрим только одно – удаление дерева. Обход дерева начинается снизу, с узлов, у которых нет родителей. Их можно безболезненно удалять, так как обращение root->left и root->right происходят до удаления объекта.

Напомню, что если мы хотим изменить указатель, то нужно передавать указатель на указатель.

Итеративная реализация обхода в глубину требует использования стека. Он нужен для того, чтобы «откладывать» на потом обработку некоторых узлов (например тех, у кого есть необработанные наследники, или всех левых улов и т.д.).

Реализовывать стек будем с помощью массива, который при переполнении будет изменять свой размер. Напомню, что реализация стека требует двух функций — push, которая кладёт значение на вершину стека и pop, которая снимает значение с вершины стека и возвращает его. Кроме того, будем использовать функцию peek, которая возвращает значение с вершины, но не удаляет его.

После того, как у нас готова реализация стека, напишем обходы.

Обход в ширину

О бход в ширину подразумевает, что сначала мы посещаем корень, затем, слева направо, все ветви первого уровня, затем все ветви второго уровня и т.д.

Пусть мы находимся в корне дерева. Далее необходимо посетить всех наследников корня. Таким образом, нужно засунуть в контейнер сначала узел, затем его наследников, при этом узел далее должен быть обработан первым. То есть, элемент, который вошёл первым должен быть обработан первым. Это очередь, и в этом примере мы будем использовать готовую реализацию очереди с помощью двусвязного списка.

Реализация на си

Заменим очередь на стек

Теперь функция обходит узлы как Post-Order, только задом наперёд.

Обход бесконечных деревьев

Б ывают ситуации, когда необходимо обработать бесконечное дерево. Дерево может генерироваться, когда мы обращаемся к нему (например, мы обходим сайт, страницы которого генерируются сервером во время обращения), либо его размер просто не известен (и возможно велик).

Если дерево растёт бесконечно в глубину, то его можно обрабатывать, используя проход в ширину. То есть, известно, что если спускаться вниз по ветви, то до конца мы не дойдём, но на данном уровне дерево имеет конечный размер.

Если дерево растёт бесконечно в ширину, но при этом имеет конечную глубину (то есть, у узла не два наследника, а из бесконечно много), то можно использовать поиск в глубину.

Обработку бесконечного дерева можно заканчивать например, когда обработано достаточно большое количество узлов или их значения достигли какой-то величины.

Пусть робот «шмугл» индексирует страницы на сайте. Количество ссылок на странице конечно. (т.к. страница конечна). То есть можно рассматривать страницы как узел, ссылки с которой ведут к другим узлам. Конечно, есть ссылки, которые ведут на предыдущие страницы, есть кросс-ссылки между страницами на одном уровне вложенности и т.д., сейчас всех тонкостей рассматривать не будем. То есть, есть дерево, у каждого узла которого конечное число наследников. В лучшем случае количество ссылок конечно и охватывает весь сайт. Однако, может попасться страница, на которой есть календарь, ссылки с которого генерируются автоматически. Программист забыл, что ссылки в будущее надо запретить, поэтому в глубину мы получаем бесконечно дерево, каждый новый узел которого генерируется автоматически. Обход этого дерева закончится, например, когда будет забит канал или превышен лимит по ссылкам.

Источник

Обход дерева – центрированный (inorder), прямой (preorder) и обратный (postorder) (три основных способа обхода)

Обход дерева означает посещение каждого узла дерева. Например, вы можете добавить все значения в дерево или найти самое большое. Для всех этих операций вам необходимо будет посетить каждый узел дерева.

Линейные структуры данных, такие как массивы, стеки, очереди и связанный список, имеют только один способ чтения данных. Но иерархическая структура данных, такая как дерево, может проходить разными способами.

Давайте подумаем о том, как мы можем прочитать элементы дерева на изображении, показанном выше.

Начиная сверху, слева направо

Начиная снизу, слева направо

Хотя этот процесс в некотором роде прост, он не учитывает иерархию дерева, а только глубину узлов.

Читайте также:  Способы переработки резиновых покрышек

Вместо этого мы используем методы обхода, которые учитывают базовую структуру дерева, то есть

Узел структуры, на который указывают left (левый) и right (правый) , может иметь другие левые и правые дочерние элементы, поэтому мы должны рассматривать их как поддеревья, а не подузлы.

Согласно этой структуре каждое дерево представляет собой комбинацию

  • Узел, несущий данные
  • Два поддерева

Помните, что нашей задачей является посещение каждого узла, поэтому нам нужно посетить все узлы в поддереве, посетить корневой узел и также посетить все узлы в правом поддереве.

В зависимости от порядка, в котором мы это делаем, может быть три типа обхода .

Центрированный тип обхода (Inorder traversal)

  1. Сначала посетите все узлы в левом поддереве
  2. Затем корневой узел
  3. Посетите все узлы в правом поддереве

Прямой тип обхода (Preorder traversal)

  1. Посетите корневой узел
  2. Посетите все узлы в левом поддереве
  3. Посетите все узлы в правом поддереве

Обратный тип обхода (Postorder traversal)

  1. посетить все узлы в левом поддереве
  2. посетить корневой узел
  3. посетить все узлы в правом поддереве

Давайте визуализируем центрированный тип обхода (inorder traversal). Начнем с корневого узла.

Сначала мы проходим левое поддерево. Мы также должны помнить, что нужно посетить корневой узел и правое поддерево, когда дерево будет готово.

Давайте поместим все это в стек, чтобы мы помнили.

Теперь перейдем к поддереву, указанному на вершине стека.

Опять же, мы следуем тому же правилу центрированного типа (inorder)

Пройдя левое поддерево, мы остаемся с

Поскольку у узла «5» нет поддеревьев, мы печатаем его напрямую. После этого мы печатаем его родительский узел «12», а затем правый дочерний «6».

Поместить все в стек было полезно, потому как теперь, когда левое поддерево корневого узла было пройдено, мы можем распечатать его и перейти к правому поддереву.

После прохождения всех элементов, центрированный тип обхода (inorder traversal) выглядит так:

Нам не нужно создавать стек самостоятельно, потому что рекурсия поддерживает для нас правильный порядок.

Полный код для центрированного (inorder), прямого (preorder) и обратного (postorder) типа обхода на языке программирования C размещен ниже:

Вывод кода будет выглядеть так:

Рекомендуем хостинг TIMEWEB

Рекомендуемые статьи по этой тематике

Источник

Бинарные деревья поиска и рекурсия – это просто

Существует множество книг и статей по данной теме. В этой статье я попробую понятно рассказать самое основное.

Бинарное дерево — это иерархическая структура данных, в которой каждый узел имеет значение (оно же является в данном случае и ключом) и ссылки на левого и правого потомка. Узел, находящийся на самом верхнем уровне (не являющийся чьим либо потомком) называется корнем. Узлы, не имеющие потомков (оба потомка которых равны NULL) называются листьями.


Рис. 1 Бинарное дерево

Бинарное дерево поиска — это бинарное дерево, обладающее дополнительными свойствами: значение левого потомка меньше значения родителя, а значение правого потомка больше значения родителя для каждого узла дерева. То есть, данные в бинарном дереве поиска хранятся в отсортированном виде. При каждой операции вставки нового или удаления существующего узла отсортированный порядок дерева сохраняется. При поиске элемента сравнивается искомое значение с корнем. Если искомое больше корня, то поиск продолжается в правом потомке корня, если меньше, то в левом, если равно, то значение найдено и поиск прекращается.


Рис. 2 Бинарное дерево поиска
Сбалансированное бинарное дерево поиска — это бинарное дерево поиска с логарифмической высотой. Данное определение скорее идейное, чем строгое. Строгое определение оперирует разницей глубины самого глубокого и самого неглубокого листа (в AVL-деревьях) или отношением глубины самого глубокого и самого неглубокого листа (в красно-черных деревьях). В сбалансированном бинарном дереве поиска операции поиска, вставки и удаления выполняются за логарифмическое время (так как путь к любому листу от корня не более логарифма). В вырожденном случае несбалансированного бинарного дерева поиска, например, когда в пустое дерево вставлялась отсортированная последовательность, дерево превратится в линейный список, и операции поиска, вставки и удаления будут выполняться за линейное время. Поэтому балансировка дерева крайне важна. Технически балансировка осуществляется поворотами частей дерева при вставке нового элемента, если вставка данного элемента нарушила условие сбалансированности.


Рис. 3 Сбалансированное бинарное дерево поиска

Сбалансированное бинарное дерево поиска применяется, когда необходимо осуществлять быстрый поиск элементов, чередующийся со вставками новых элементов и удалениями существующих. В случае, если набор элементов, хранящийся в структуре данных фиксирован и нет новых вставок и удалений, то массив предпочтительнее. Потому что поиск можно осуществлять алгоритмом бинарного поиска за то же логарифмическое время, но отсутствуют дополнительные издержки по хранению и использованию указателей. Например, в С++ ассоциативные контейнеры set и map представляют собой сбалансированное бинарное дерево поиска.


Рис. 4 Экстремально несбалансированное бинарное дерево поиска

Теперь кратко обсудим рекурсию. Рекурсия в программировании – это вызов функцией самой себя с другими аргументами. В принципе, рекурсивная функция может вызывать сама себя и с теми же самыми аргументами, но в этом случае будет бесконечный цикл рекурсии, который закончится переполнением стека. Внутри любой рекурсивной функции должен быть базовый случай, при котором происходит выход из функции, а также вызов или вызовы самой себя с другими аргументами. Аргументы не просто должны быть другими, а должны приближать вызов функции к базовому случаю. Например, вызов внутри рекурсивной функции расчета факториала должен идти с меньшим по значению аргументом, а вызовы внутри рекурсивной функции обхода дерева должны идти с узлами, находящимися дальше от корня, ближе к листьям. Рекурсия может быть не только прямой (вызов непосредственно себя), но и косвенной. Например А вызывает Б, а Б вызывает А. С помощью рекурсии можно эмулировать итеративный цикл, а также работу структуры данных стек (LIFO).

Читайте также:  Способы оживления человека при реанимации

Кратко обсудим деревья с точки зрения теории графов. Граф – это множество вершин и ребер. Ребро – это связь между двумя вершинами. Количество возможных ребер в графе квадратично зависит от количества вершин (для понимания можно представить турнирную таблицу сыгранных матчей). Дерево – это связный граф без циклов. Связность означает, что из любой вершины в любую другую существует путь по ребрам. Отсутствие циклов означает, что данный путь – единственный. Обход графа – это систематическое посещение всех его вершин по одному разу каждой. Существует два вида обхода графа: 1) поиск в глубину; 2) поиск в ширину.

Поиск в ширину (BFS) идет из начальной вершины, посещает сначала все вершины находящиеся на расстоянии одного ребра от начальной, потом посещает все вершины на расстоянии два ребра от начальной и так далее. Алгоритм поиска в ширину является по своей природе нерекурсивным (итеративным). Для его реализации применяется структура данных очередь (FIFO).

Поиск в глубину (DFS) идет из начальной вершины, посещая еще не посещенные вершины без оглядки на удаленность от начальной вершины. Алгоритм поиска в глубину по своей природе является рекурсивным. Для эмуляции рекурсии в итеративном варианте алгоритма применяется структура данных стек.

С формальной точки зрения можно сделать как рекурсивную, так и итеративную версию как поиска в ширину, так и поиска в глубину. Для обхода в ширину в обоих случаях необходима очередь. Рекурсия в рекурсивной реализации обхода в ширину всего лишь эмулирует цикл. Для обхода в глубину существует рекурсивная реализация без стека, рекурсивная реализация со стеком и итеративная реализация со стеком. Итеративная реализация обхода в глубину без стека невозможна.

Асимптотическая сложность обхода и в ширину и в глубину O(V + E), где V – количество вершин, E – количество ребер. То есть является линейной по количеству вершин и ребер. Записи O(V + E) с содержательной точки зрения эквивалентна запись O(max(V,E)), но последняя не принята. То есть, сложность будет определятся максимальным из двух значений. Несмотря на то, что количество ребер квадратично зависит от количества вершин, мы не можем записать сложность как O(E), так как если граф сильно разреженный, то это будет ошибкой.

DFS применяется в алгоритме нахождения компонентов сильной связности в ориентированном графе. BFS применяется для нахождения кратчайшего пути в графе, в алгоритмах рассылки сообщений по сети, в сборщиках мусора, в программе индексирования – пауке поискового движка. И DFS и BFS применяются в алгоритме поиска минимального покрывающего дерева, при проверке циклов в графе, для проверки двудольности.
Обходу в ширину в графе соответствует обход по уровням бинарного дерева. При данном обходе идет посещение узлов по принципу сверху вниз и слева направо. Обходу в глубину в графе соответствуют три вида обходов бинарного дерева: прямой (pre-order), симметричный (in-order) и обратный (post-order).

Прямой обход идет в следующем порядке: корень, левый потомок, правый потомок. Симметричный — левый потомок, корень, правый потомок. Обратный – левый потомок, правый потомок, корень. В коде рекурсивной функции соответствующего обхода сохраняется соответствующий порядок вызовов (порядок строк кода), где вместо корня идет вызов данной рекурсивной функции.

Если нам дано изображение дерева, и нужно найти его обходы, то может помочь следующая техника (см. рис. 5). Обводим дерево огибающей замкнутой кривой (начинаем идти слева вниз и замыкаем справа вверх). Прямому обходу будет соответствовать порядок, в котором огибающая, двигаясь от корня впервые проходит рядом с узлами слева. Для симметричного обхода порядок, в котором огибающая, двигаясь от корня впервые проходит рядом с узлами снизу. Для обратного обхода порядок, в котором огибающая, двигаясь от корня впервые проходит рядом с узлами справа. В коде рекурсивного вызова прямого обхода идет: вызов, левый, правый. Симметричного – левый, вызов, правый. Обратного – левый правый, вызов.


Рис. 5 Вспомогательный рисунок для обходов

Для бинарных деревьев поиска симметричный обход проходит все узлы в отсортированном порядке. Если мы хотим посетить узлы в обратно отсортированном порядке, то в коде рекурсивной функции симметричного обхода следует поменять местами правого и левого потомка.

Надеюсь Вы не уснули, и статья была полезна. Скоро надеюсь последует продолжение банкета статьи.

Источник

Оцените статью
Разные способы