Обеспечение репрезентативности выборки
Репрезентативность выборки — иными словами, ее представительность — это способность выборки представлять изучаемые явления достаточно полно — с точки зрения их изменчивости в генеральной совокупности.
Конечно, полное представление об изучаемом явлении, во всем его диапазоне и нюансах изменчивости, может дать только генеральная совокупность. Поэтому репрезентативность всегда ограничена в той мере, в какой ограничена выборка. И именно репрезентативность выборки является основным критерием при определении границ генерализации выводов исследования. Тем не менее, существуют приемы, позволяющие получить достаточную для исследователя репрезентативность выборки.
Первый и основной прием — это простой случайный отбор. Он предполагает обеспечение таких условий, чтобы каждый член генеральной совокупности имел равные с другими шансы попасть в выборку. Случайный отбор обеспечивает возможность попадания в выборку самых разных представителей генеральной совокупности. При этом принимаются специальные меры, исключающие появление какой-либо закономерности при отборе. И это позволяет надеяться на то, что в конечном итоге в выборке изучаемое свойство будет представлено если и не во всем, то в максимально возможном его многообразии.
Второй способ обеспечения репрезентативности — это стратифицированный случайный отбор, или отбор по свойствам генеральной совокупности. Он предполагает предварительное определение тех качеств, которые могут влиять на изменчивость изучаемого свойства (это может быть пол, уровень дохода или образования и т. д.). Затем определяется процентное соотношение численности различающихся по этих качествам групп (страт) в генеральной совокупности и обеспечивается идентичное процентное соотношение соответствующих групп в выборке. Далее в каждую подгруппу выборки испытуемые подбираются по принципу простого случайного отбора.
Дельфийская методика
Дельфы-жители умеют предсказывать будущее
Метод представляет собой обобщение оценок экспертов, касающихся перспектив развития того или иного экономического субъекта. Особенность метода состоит в последовательном, индивидуальном анонимном опросе экспертов. Такая методика исключает непосредственный контакт экспертов между собой и, следовательно, групповое влияние, возникающее при совместной работе и состоящее в приспособлении к мнению большинства.
Анализ с помощью дельфийского метода проводится в несколько этапов, результаты обрабатываются статистическими методами. Выявляются преобладающие суждения экспертов, сближаются их точки зрения. Всех экспертов знакомят с доводами тех, чьи суждения сильно выбиваются из общего русла. После этого все эксперты могут менять мнение, а процедура повторяется.
Гл-выявить группу экспертов
2 метода для выявл-самооценка(индекс,рассчитанный на основании оценки своих знаний,умений,навыков,также к способности и прогнозированию по шкале:высок,средн,низк)
Коллективная оценка(эксперты знают друг друга с точки зрения компетенции)
В табл от 1 до 10 обозначают кого выбирают
0 никто сам себя не выберет
В посл столбце сумма голосов,вес мнений об эксперте
Метод экспертной оценки
Дельфы-жители умеют предсказывать будущее
Метод представляет собой обобщение оценок экспертов, касающихся перспектив развития того или иного экономического субъекта. Особенность метода состоит в последовательном, индивидуальном анонимном опросе экспертов. Такая методика исключает непосредственный контакт экспертов между собой и, следовательно, групповое влияние, возникающее при совместной работе и состоящее в приспособлении к мнению большинства.
Анализ с помощью дельфийского метода проводится в несколько этапов, результаты обрабатываются статистическими методами. Выявляются преобладающие суждения экспертов, сближаются их точки зрения. Всех экспертов знакомят с доводами тех, чьи суждения сильно выбиваются из общего русла. После этого все эксперты могут менять мнение, а процедура повторяется.
Гл-выявить группу экспертов
2 метода для выявл-самооценка(индекс,рассчитанный на основании оценки своих знаний,умений,навыков,также к способности и прогнозированию по шкале:высок,средн,низк)
Коллективная оценка(эксперты знают друг друга с точки зрения компетенции)
В табл от 1 до 10 обозначают кого выбирают
0 никто сам себя не выберет
В посл столбце сумма голосов,вес мнений об эксперте
применяется чаще всего для долгосрочных прогнозов развития научно технического прогресса. Он заключается в том, что 10—15 крупных специалистов дают ответы на конкретные вопросы анкеты. Такой опрос проводится в несколько туров. Не-
достатком этого метода является известная доля субъективизма
в оценках экспертов
Метод математического моделирования
Описание— Составляется математический «эквивалент» процесса или объекта, отражающий его основные свойства.
Область применения— Любые процессы, подающиеся математическому описанию.
Достоинства —Широкая область применения.
Недостатки— Достаточно сложно построить модель адекватно, учитывающую все факторы.
Математическое моделирование – это один из важнейших методов научного познания, с помощью которого создается модель (условный образ) объекта исследования. Сущность его заключается в том, что взаимосвязь исследуемых явлений и факторов передается в форме конкретных математических уравнений.
Как алгоритм математической деятельности метод математического моделирования содержит три этапа:
- построение математической модели объекта (явления, процесса);
- исследование полученной модели, т. е. решение полученной математической задачи средствами математики;
- интерпретация полученного решения с точки зрения исходной ситуации.
При этом должны соблюдаться следующие требования:
- модель должна адекватно отражать наиболее существенные (с точки зрения определенной постановки задачи) свойства объекта, отвлекаясь от несущественных его свойств;
- модель должна иметь определенную область применимости, обусловленную принятыми при её построении допущениями;
- модель должна позволять получать новые знания об изучаемом объекте.
Во введении понятий математическая модель и моделирование позволяют решать в учебном процессе следующие актуальные задачи:
- развитие мышления и интеллекта;
- формирование мировоззрения;
- овладение элементами математической культуры.
После того как математическая модель построена, возможны два случая:
- полученная конкретная модель принадлежит к уже изученному в математике классу моделей и тогда математическая задача решается уже известными методами;
- эта модель не укладывается ни в одну из известных схем (классов) моделей, разработанных в математике, и тогда возникает внутриматематическая проблема исследования нового класса моделей, что приводит к дальнейшему развитию одной из существующих математических теорий или к появлению новой.
Это развитие математических теорий находит затем применение к изучению той области знаний, в которой возникла исходная задача, а также и других объектов реального мира, приводящих к математическим объектам того же класса
Источник
Способы отбора, обеспечивающие репрезентативность выборки
Суть выборочного наблюдения, его преимущества
Тема 6. Выборочное наблюдение
1.Суть выборочного наблюдения, его преимущества.
2. Способы отбора, обеспечивающие репрезентативность выборки.
3. Расчёт средней и предельной ошибки выборки. Определение границ интервала для средней и доли в генеральной совокупности.
4.Расчёт необходимой численности выборки.
Выборочное наблюдение – один из видов несплошного наблюдения. При выборочном наблюдении – обследованию подвергается некоторая часть совокупности, а обобщающие показатели, характеризующие эту исследованную часть, характеризуют всю совокупность. Обследованию подвергается сравнительно небольшая часть совокупности 5 – 10%, реже 15-20%.
Подлежащая изучению совокупность, из которой производится отбор части единиц, называется генеральной. Отобранная определенным образом часть генеральной совокупности, подлежащая обследованию, называется выборочной совокупностью или выборкой.
При соблюдении правил научной организации обследования выборочный метод дает достаточно точные результаты.
Преимущества выборочного метода:
1.Экономия времени и средств в результате сокращения объемов работ, сроков и удешевления работ.
2.Сведение к минимуму порчи или уничтожения исследуемых объектов.
3.Возможность детального, квалифицированного исследования каждой единицы.
4. Достижение большей точности благодаря уменьшению ошибок регистрации.
Состав выборочной совокупности в той или иной мере отличается от состава генеральной совокупности. Это объективно возникающее расхождение между характеристиками выборки и генеральной совокупности составляет ошибку выборки. Она зависит от ряда факторов: степени вариации изучаемого признака, численности выборки, методов отбора единиц в выборочную совокупность, принятого уровня достоверности результата исследования.
Система правил отбора единиц, способов определения ошибки выборки и распространение характеристик выборки на генеральную совокупность составляют содержание выборочного метода.
Применяя выборочный метод, обычно используют два основных вида обобщающих показателей: среднюю величину количественного признака и относительную величину альтернативного признака.
Способы формирования выборочных совокупностей определяются задачами исследования и спецификой объекта изучения.
Способы отбора определяются правилами формирования выборочной совокупности. Выборка может быть:
Все эти способы отбора могут быть организованы в виде повторной и бесповторной выборки.
При собственно – случайной выборке отбор единиц из генеральной совокупности производится в случайном порядке. Количество отобранных единиц определяется долей выборки. Каждой единице генеральной совокупности предоставляется равная возможность попадания в выборочную совокупность. Может быть использована жеребьевка, таблицы случайных чисел и т.д.
При механической выборке отбор единиц производится механически, через определенные, равные интервалы. Размер интервала определяется долей выборки, например, при десятипроцентной выборке исследуется каждая десятая единица.
Таким образом, в соответствии с принятой долей отбора генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы отбирается в выборку лишь одна единица.
Для обеспечения репрезентативности все единицы генеральной совокупности должны быть предварительно упорядочены по существенному, нейтральному или второстепенному признаку.
Если совокупность упорядочена по существенному признаку, отбирается единица, находящаяся в середине группы. Если по нейтральному или второстепенному – любая единица из группы.
При типической выборке генеральная совокупность вначале разбивается на однородные типические группы. Затем из каждой типической группы собственно – случайным или механическим способом производится отбор единиц в выборочную совокупность.
Типическая выборка может быть пропорциональной и непропорциональной. В первом случае число единиц выборочной совокупности распределяется пропорционально удельному весу каждой группы в генеральной совокупности, во втором – с учетом удельного веса каждой группы в общем объеме совокупности и вариации признака по группам.
Сущность серийного(гнездового) отбора состоит в том, что производится отбор не отдельных единиц, а целых групп (гнезд, серий), внутри которых обследуются все единицы. Отбор серий осуществляется собственно – случайным или механическим способом.
Для уменьшения возможной ошибки серийной выборки на практике приходится увеличивать число обследуемых серий, т.е. брать более высокую долю выборки.
На практике часто применяется комбинированная выборка, т.е. рассмотренные выше способы применяются в разных сочетаниях.
Источник
Репрезентативность выборки
Чтобы посредством опроса получить максимально точные данные о какой-либо группе людей, например, о ее поведении и предпочтениях, было бы логично опросить эту группу целиком. Но что, если интересующая нас группа очень велика? Опрос всех потребителей молока в России или всех жителей Южного административного округа Москвы займет много времени и обойдется в астрономическую сумму денег. А нужно ли опрашивать их всех?
О размере выборки и статистической ошибке измерений подробно написано в статье «Выборка. Размер – не главное. Или главное» . В этой статье будет рассмотрено второе требование к выборке, также обеспечивающее качество исследования – репрезентативность.
Согласно теории выборочного метода, неоднократно подтвержденной практикой, опрашивать всех нет необходимости, а можно опросить лишь часть группы, которая может быть в тысячи раз меньше. Эта маленькая часть называется выборкой (или выборочной совокупностью), а большая группа, которую она представляет, называется генеральной совокупностью.
При этом если выборка сформирована правильно, выводы, полученные на основе изучения выборки, могут быть перенесены и на генеральную совокупность. Например, если в выборке женщины значимо чаще, чем мужчины, пользуются дезодорантами, то делается вывод, что и в генеральной совокупности (например, в исследованном городе) присутствует такая закономерность. Процесс переноса выводов с выборки на генеральную совокупность называется генерализацией. А свойство выборки отражать характеристики генеральной совокупности называется репрезентативностью. Для более комфортного запоминания термина на рис.1. приведены иллюстрации, когда выборка отражает свойства генеральной совокупности и когда свойства выборки отличаются от свойств генеральной совокупности.
Рис.1. Иллюстративные примеры соответствия (несоответствия) свойств генеральной совокупности и выборки
Не стоит путать понятие репрезентативности с такими понятиями как валидность и релевантность, хотя они тоже относятся к характеристикам качества исследования. В социальных науках валидность понимается довольно широко, но чаще всего – как обоснованность. Понятие валидности относится не к выборке, а к исследовательской методике. Методика или измерение (анкета, блок вопросов, тест) считается валидным, если фиксирует именно то понятие или свойство, которое планируется измерить. Например, если мы захотим оценить уровень лояльности клиента к магазину и выберем для этого лишь показатель частоты посещения магазина, валидность этого подхода будет неполной: возможно, респондент часто заходит в магазин только из-за банкомата, который там установлен. Валидная методика в данном примере должна включать и другие показатели: предпочтение магазина, суммы покупок в этом и других магазинах, готовность переключиться на другие магазины, готовность рекомендовать магазин и др.
При установлении валидности решающую роль играет обоснование и последующая проверка гипотезы релевантности, то есть соответствия измеряемых параметров характеристикам исследуемого объекта. Житейский пример нерелевантности – измерять уровень счастья человека количеством денег у него (хотя, наверное, не все с этим согласятся). Очевидный пример нерелевантности – попытка измерить массу тела по его температуре.
Но вернемся к понятию репрезентативности. В то время как точность измерений зависит от размера выборки, размер выборки не гарантирует ее репрезентативности. Репрезентативность выборки главным образом обеспечивается способом отбора ее участников (респондентов). Примером явного нарушения репрезентативности может послужить шутка о том, что интернет-опрос показал, что 100% людей пользуется интернетом.
Можно выделить несколько вариантов нарушения репрезентативности выборки: когда опрошены не те люди и когда опрошено слишком много (или мало) определенных людей (например, женщин намного больше, чем мужчин). Кроме того, чем меньше размер выборки, тем меньше вероятность того, что она будет репрезентативной. Например, допустим, 1% населения мог бы заинтересоваться новой услугой. Это 1 из 100 людей. Если размер выборки составляет всего 60 человек, то в вашей выборке может отсутствовать человек, который, скорее всего, будет заинтересован в услуге. Ваша выборка менее репрезентативна, потому что она меньше. Ваши результаты будут разными в зависимости от того, содержит ли ваша выборка одного из этих людей или нет. Пример репрезентативной и нерепрезентативной выборки показан на рис.2.
Рис.2. Пример репрезентативной и нерепрезентативной выборки
На рис.3 показана та же по составу генеральная совокупность, но с другим расположением объектов внутри круга.
Рис.3. Пример репрезентативной и нерепрезентативной выборки при другом расположении объектов генеральной совокупности
Говоря простым языком, репрезентативная выборка – это такая выборка, в которой представлены все подгруппы, важные для исследования. Помимо этого, характер распределения рассматриваемых параметров в выборке должен быть таким же, как в генеральной совокупности.
Простой случайный отбор респондентов представляется оптимальным способом формирования репрезентативной выборки. Поскольку в этом случае у любого представителя генеральной совокупности одинаковая вероятность попасть в выборку, в нее попадут люди с разными характеристиками пропорционально их долям в генеральной совокупности. В итоге выборка будет представлять собой нечто вроде уменьшенной копии генеральной совокупности.
Случайность отбора респондентов в выборку обеспечивается разными способами. Например, для телефонного опроса жителей города берется база данных всех телефонных номеров, и номера респондентов случайным образом выбираются компьютером (с использованием генератора случайных чисел). При уличном опросе интервьюеров распределяют по случайно выбранным точкам и инструктируют опрашивать каждого N-ного прохожего.
Наглядным примером репрезентативной выборки может служить пицца. Если целая пицца – это генеральная совокупность, которую мы хотим изучить, то кусок пиццы – это выборка. Как правило, достаточно одного куска пиццы, чтобы судить обо всей пицце (при условии, что ингредиенты равномерно распределены по ее поверхности). Таким образом, кусок пиццы пиццы на рис.4 – это репрезентативная выборка из пиццы.
Рис.4. Наглядный пример репрезентативной выборки (пицца)
Важно отметить, что не любой кусок пиццы будет репрезентативной выборкой. Разные способы получения куска пиццы могут принципиально повлиять на качество исследования и выводы, которые будут получены при анализе каждого варианта выборки (рис.4)
(рисунок в сушильной камере, готовится к публикации)
Рис.5. Наглядный пример формирования репрезентативной и нерепрезентативной выборки.
Еще один показательный пример формирования репрезентативной выборки – кастрюля, содержимое которой мы должны узнать (допустим, там скрывается борщ). Мы только один раз можем зачерпнуть из кастрюли ложкой (провести исследование). В нашем примере ложка – это выборка, а содержимое кастрюли – генеральная совокупность.
Если мы зачерпнем сверху, то придем к выводу, что в кастрюле бульон. Если снизу – решим, что в кастрюле мясо. Зачерпнув где-то посередине, мы получим картошку или капусту. В любом из трех случаев выводы будут неверны. Чтобы получить достоверный результат, нам стоит хорошенько перемешать содержимое кастрюли, перед тем как пробовать его. Перемешивание в данном случае – аналог процедуры простого случайного отбора, поскольку оно предоставляет всем ингредиентам примерно равную вероятность попадания в ложку-выборку (или тарелку-выборку).
Рис.6. Борщ как модель, демонстрирующая репрезентативность выборки.
В реальности применить простой случайный отбор респондентов не всегда удается в полной мере. Например, мы можем абсолютно корректно отобрать в выборку нужное количество номеров домашних телефонов случайным образом, но при их прозвоне выяснится, что дозвониться и поговорить удается преимущественно с пенсионерами, а «поймать» дома молодежь и работающих людей получается плохо.
Возвращаясь к примеру с борщом, если у нас вместо кастрюли – огромный ресторанный котел, а в руках все та же обычная ложка, перемешивание будет неэффективным. Чтобы решить задачу, потребуются иные подходы. Например, мы можем теоретически разделить глубину котла на несколько слоев и постараться зачерпнуть содержимое из каждого слоя (из случайного места слоя: не только в центре, но и по краям). Таким образом, наша итоговая выборка будет состоять уже из нескольких выборок и при этом адекватно отражать содержимое всех слоев котла. Подобные альтернативные подходы называются типами выборки, которых придумано достаточно много для того, чтобы максимизировать репрезентативность выборки в сложных условиях реального мира.
Последствия нарушения репрезентативности выборки: некорректные выводы исследования, выброшенный на ветер бюджет исследования, финансовые потери вследствие применения неправильных выводов. Вы можете выбрать валидную исследовательскую методику, рассчитать объем выборки, обеспечивающий приемлемую точность измерений, но, если выборка исследования нерепрезентативна, получить достоверную информацию не удастся.
Самым известным примером нарушения репрезентативности выборки является история провала американского журнала «Литературный дайджест».
В 1936 году журнал в очередной раз провел почтовый опрос общественного мнения о вероятных результатах грядущих президентских выборов в США. До 1936 года опрос всегда правильно предсказывал победителя. Опрос 1936 года показал, что победителем с большим отрывом станет кандидат от республиканцев, но в итоге победителем оказался представитель демократов.
Таким образом, гигантская выборка (около 2,4 млн. человек) не обеспечила достоверных результатов. В чем же заключалась причина ошибки?
Называются две основные причины провала: смещение при формировании выборки и смещение вследствие отказа респондентов от участия в опросе.
Прежде всего, журнал включил своих подписчиков в список для рассылки анкет и, желая расширить выборку, использовал два других доступных тогда списка граждан: зарегистрированных автовладельцев и пользователей телефонов. Во времена Великой Депрессии представители этих групп отличались от остального населения более высоким доходом, как и подписчики самого журнала. Таким образом, полученная база для рассылки не являлась корректным отражением структуры населения США.
Вторая проблема с опросом заключалась в том, что из 10 миллионов человек, чьи имена были в первоначальном списке рассылки, только 2,4 миллиона ответили на опрос. Вероятно, высокий процент отказов был связан с тем, что опрос проводился по почте. Уже в те времена американцы относились к почтовым рассылкам как к спаму. Таким образом, размер выборки составил примерно одну четверть от того, что первоначально планировалось. Когда доля ответивших низка (как это было в данном случае), считается, что исследование страдает от необъективности ответов.
У этой истории две морали: Большая, но неправильно сформированная выборка гораздо хуже маленькой, но правильно сформированной выборки. При проведении опроса не упускайте из внимания смещение отбора и смещение в результате отказов.
Пример из военной практики. Во Вторую мировую войну американские военные столкнулись со следующей проблемой. Не все американские бомбардировщики после задания возвращались на базу. На вернувшихся самолетах оставалось множество пробоин от выстрелов противника, но распределены они были неравномерно: больше всего на фюзеляже и прочих частях, меньше в топливной системе и гораздо меньше — в двигателе. Командованию казалось логичным, что в наиболее поврежденных местах нужно установить больше брони.
Привлеченный к решению задачи математик возразил: данные как раз показывают, что самолет, получивший пробоины в этих местах, еще может вернуться на базу. А самолет, которому попали в бензобак или двигатель, выходит из строя и не возвращается. Поэтому укреплять следует те места, которые у вернувшихся самолетов повреждены меньше всего.
Рис .7. Пробоины на вернувшихся самолётах.
Получившие повреждения в других местах не смогли вернуться на базу
Эта задача служит примером нарушения репрезентативности выборки, когда в нее включены не те респонденты: в данном случае, вернувшиеся самолеты, в то время как не вернувшиеся проигнорированы.
Применительно к маркетинговым исследованиям, эта ситуация подобна следующей. При опросе клиентов бизнеса будет ошибкой опрашивать только текущих клиентов и не опрашивать потерянных клиентов (а какие «пробоины» получили они?).
При опросе посетителей ТРЦ важно правильно расставить интервьюеров. Например, если поставить интервьюеров только у главного входа, в выборку не попадут посетители, приехавшие в ТРЦ на автомобиле и попавшие в него через парковку. Как следствие, выводы, полученные на собранных данных, будут корректны только для той части посетителей, которые приходят в ТРЦ пешком, а значит, делают меньше покупок, не покупают габаритные товары, живут ближе к ТРЦ, чем приезжающие на автомобиле.
Другой пример. Бывает, что в разных районах города сбор анкет идет с разной скоростью: где-то (например, в центре города) большой пешеходный поток и у людей есть время на участие в опросе (отдыхающие, в отпуске, офисные сотрудники на обеде), а на окраинах либо мало людей на улицах, либо все спешат на работу и отказываются участвовать. В результате, если не ограничивать доли районов, в выборке будут преобладать люди из центрального района, которые могут значимо отличаться от остальных людей родом занятий, уровнем дохода и образования, уровнем осведомленности о магазинах и др. Таким образом, собранная выборка уже не будет репрезентативной по отношению к населению всего города.
Несмотря на многие положительные стороны онлайн-опросов, такие как экономичность, оперативность сбора информации, удобство ее обработки и т. д., некоторые их особенности напрямую угрожают репрезентативности исследования:
Во-первых, участники онлайн-опросов – это, как правило, активные пользователи интернета, хорошо в нем разбирающиеся и больше подверженные влиянию интернет-культуры, чем обычные люди.
Во-вторых, люди, у которых есть время и желание регулярно участвовать в онлайн-опросах за небольшое вознаграждение, скорее всего, значительно отличаются от остальных людей как по социально-демографическим, так и по психографическим характеристикам.
В-третьих, профессиональное участие в опросах приводит к так называемой профессиональной деформации, когда ответы респондентов на вопросы новых исследований обусловлены предыдущим опытом, но не жизненным, а опытом участия в других опросах.
Таким образом, в данном случае возникает та ситуация, когда опрашиваются не те люди, хотя по формальным характеристикам они подходят под описание целевой аудитории.
Итак, чтобы получить достаточно точные данные об интересующей нас группе людей, необязательно опрашивать их всех, благодаря свойству репрезентативности выборки.
«Чем больше, тем лучше» – неправильный подход к формированию выборки.
Небольшая репрезентативная выборка лучше большой, но нерепрезентативной выборки. Применительно к выборке не стоит пугаться слова «случайная». Это вовсе не значит, что в исследовании будут получены случайные результаты. Напротив, случайный подход к формированию выборки делает ее максимально похожей на генеральную совокупность, а значит, репрезентативной.
При проектировании выборки следует учитывать опасность смещения структуры выборки вследствие особенностей сбора информации и других условий.
Источник