- SQL запросы быстро. Часть 1
- Введение
- Практика
- Структура sql-запросов
- SELECT, FROM
- WHERE
- GROUP BY
- HAVING
- ORDER BY
- Как думать на SQL?
- 1. Три волшебных слова
- 2. Наша база
- 3. Простой запрос
- 3.1 FROM — откуда берем данные
- 3.2 WHERE — какие данные показываем
- 3.3 SELECT — как показываем данные
- 4. Соединения (джойны)
- 5. Агрегирование
- 6. Подзапросы
- 6.1 Двумерная таблица
- 6.2 Одномерный массив
- 6.3 Отдельные значения
- 7. Операции записи
- 7.1 Update
- 7.2 Delete
- 7.3 Insert
- 8. Проверка
SQL запросы быстро. Часть 1
Введение
Язык SQL очень прочно влился в жизнь бизнес-аналитиков и требования к кандидатам благодаря простоте, удобству и распространенности. Из собственного опыта могу сказать, что наиболее часто SQL используется для формирования выгрузок, витрин (с последующим построением отчетов на основе этих витрин) и администрирования баз данных. И поскольку повседневная работа аналитика неизбежно связана с выгрузками данных и витринами, навык написания SQL запросов может стать фактором, из-за которого кандидат или получит преимущество, или будет отсеян. Печальная новость в том, что не каждый может рассчитывать получить его на студенческой скамье. Хорошая новость в том, что в изучении SQL нет ничего сложного, это быстро, а синтаксис запросов прост и понятен. Особенно это касается тех, кому уже доводилось сталкиваться с более сложными языками.
Обучение SQL запросам я разделил на три части. Эта часть посвящена базовому синтаксису, который используется в 80-90% случаев. Следующие две части будут посвящены подзапросам, Join’ам и специальным операторам. Цель гайдов: быстро и на практике отработать синтаксис SQL, чтобы добавить его к арсеналу навыков.
Практика
Введение в синтаксис будет рассмотрено на примере открытой базы данных, предназначенной специально для практики SQL. Чтобы твое обучение прошло максимально эффективно, открой ссылку ниже в новой вкладке и сразу запускай приведенные примеры, это позволит тебе лучше закрепить материал и самостоятельно поработать с синтаксисом.
Кликнуть здесь
После перехода по ссылке можно будет увидеть сам редактор запросов и вывод данных в центральной части экрана, список таблиц базы данных находится в правой части.
Структура sql-запросов
Общая структура запроса выглядит следующим образом:
Разберем структуру. Для удобства текущий изучаемый элемент в запроса выделяется CAPS’ом.
SELECT, FROM
SELECT, FROM — обязательные элементы запроса, которые определяют выбранные столбцы, их порядок и источник данных.
Выбрать все (обозначается как *) из таблицы Customers:
Выбрать столбцы CustomerID, CustomerName из таблицы Customers:
WHERE
WHERE — необязательный элемент запроса, который используется, когда нужно отфильтровать данные по нужному условию. Очень часто внутри элемента where используются IN / NOT IN для фильтрации столбца по нескольким значениям, AND / OR для фильтрации таблицы по нескольким столбцам.
Фильтрация по одному условию и одному значению:
Фильтрация по одному условию и нескольким значениям с применением IN (включение) или NOT IN (исключение):
Фильтрация по нескольким условиям с применением AND (выполняются все условия) или OR (выполняется хотя бы одно условие) и нескольким значениям:
GROUP BY
GROUP BY — необязательный элемент запроса, с помощью которого можно задать агрегацию по нужному столбцу (например, если нужно узнать какое количество клиентов живет в каждом из городов).
При использовании GROUP BY обязательно:
- перечень столбцов, по которым делается разрез, был одинаковым внутри SELECT и внутри GROUP BY,
- агрегатные функции (SUM, AVG, COUNT, MAX, MIN) должны быть также указаны внутри SELECT с указанием столбца, к которому такая функция применяется.
Группировка количества клиентов по городу:
Группировка количества клиентов по стране и городу:
Группировка продаж по ID товара с разными агрегатными функциями: количество заказов с данным товаром и количество проданных штук товара:
Группировка продаж с фильтрацией исходной таблицы. В данном случае на выходе будет таблица с количеством клиентов по городам Германии:
Переименование столбца с агрегацией с помощью оператора AS. По умолчанию название столбца с агрегацией равно примененной агрегатной функции, что далее может быть не очень удобно для восприятия.
HAVING
HAVING — необязательный элемент запроса, который отвечает за фильтрацию на уровне сгруппированных данных (по сути, WHERE, но только на уровень выше).
Фильтрация агрегированной таблицы с количеством клиентов по городам, в данном случае оставляем в выгрузке только те города, в которых не менее 5 клиентов:
В случае с переименованным столбцом внутри HAVING можно указать как и саму агрегирующую конструкцию count(CustomerID), так и новое название столбца number_of_clients:
Пример запроса, содержащего WHERE и HAVING. В данном запросе сначала фильтруется исходная таблица по пользователям, рассчитывается количество клиентов по городам и остаются только те города, где количество клиентов не менее 5:
ORDER BY
ORDER BY — необязательный элемент запроса, который отвечает за сортировку таблицы.
Простой пример сортировки по одному столбцу. В данном запросе осуществляется сортировка по городу, который указал клиент:
Осуществлять сортировку можно и по нескольким столбцам, в этом случае сортировка происходит по порядку указанных столбцов:
По умолчанию сортировка происходит по возрастанию для чисел и в алфавитном порядке для текстовых значений. Если нужна обратная сортировка, то в конструкции ORDER BY после названия столбца надо добавить DESC:
Обратная сортировка по одному столбцу и сортировка по умолчанию по второму:
JOIN — необязательный элемент, используется для объединения таблиц по ключу, который присутствует в обеих таблицах. Перед ключом ставится оператор ON.
Запрос, в котором соединяем таблицы Order и Customer по ключу CustomerID, при этом перед названиям столбца ключа добавляется название таблицы через точку:
Нередко может возникать ситуация, когда надо промэппить одну таблицу значениями из другой. В зависимости от задачи, могут использоваться разные типы присоединений. INNER JOIN — пересечение, RIGHT/LEFT JOIN для мэппинга одной таблицы знаениями из другой,
Внутри всего запроса JOIN встраивается после элемента from до элемента where, пример запроса:
Другие типы JOIN’ов можно увидеть на замечательной картинке ниже:
В следующей части подробнее поговорим о типах JOIN’ов и вложенных запросах.
При возникновении вопросов/пожеланий, всегда прошу обращаться!
Источник
Как думать на SQL?
Надо “ SELECT * WHERE a=b FROM c ” или “ SELECT WHERE a=b FROM c ON * ” ?
Если вы похожи на меня, то согласитесь: SQL — это одна из тех штук, которые на первый взгляд кажутся легкими (читается как будто по-английски!), но почему-то приходится гуглить каждый простой запрос, чтобы найти правильный синтаксис.
А потом начинаются джойны, агрегирование, подзапросы, и получается совсем белиберда. Вроде такой:
Буэ! Такое спугнет любого новичка, или даже разработчика среднего уровня, если он видит SQL впервые. Но не все так плохо.
Легко запомнить то, что интуитивно понятно, и с помощью этого руководства я надеюсь снизить порог входа в SQL для новичков, а уже опытным предложить по-новому взглянуть на SQL.
Не смотря на то, что синтаксис SQL почти не отличается в разных базах данных, в этой статье для запросов используется PostgreSQL. Некоторые примеры будут работать в MySQL и других базах.
1. Три волшебных слова
В SQL много ключевых слов, но SELECT , FROM и WHERE присутствуют практически в каждом запросе. Чуть позже вы поймете, что эти три слова представляют собой самые фундаментальные аспекты построения запросов к базе, а другие, более сложные запросы, являются всего лишь надстройками над ними.
2. Наша база
Давайте взглянем на базу данных, которую мы будем использовать в качестве примера в этой статье:
У нас есть книжная библиотека и люди. Также есть специальная таблица для учета выданных книг.
- В таблице «books» хранится информация о заголовке, авторе, дате публикации и наличии книги. Все просто.
- В таблице “members” — имена и фамилии всех записавшихся в библиотеку людей.
- В таблице “borrowings” хранится информация о взятых из библиотеки книгах. Колонка bookid относится к идентификатору взятой книги в таблице “books”, а колонка memberid относится к соответствующему человеку из таблицы “members”. У нас также есть дата выдачи и дата, когда книгу нужно вернуть.
3. Простой запрос
Давайте начнем с простого запроса: нам нужны имена и идентификаторы (id) всех книг, написанных автором “Dan Brown”
Запрос будет таким:
А результат таким:
id | title |
---|---|
2 | The Lost Symbol |
4 | Inferno |
Довольно просто. Давайте разберем запрос чтобы понять, что происходит.
3.1 FROM — откуда берем данные
Сейчас это может показаться очевидным, но FROM будет очень важен позже, когда мы перейдем к соединениям и подзапросам.
FROM указывает на таблицу, по которой нужно делать запрос. Это может быть уже существующая таблица (как в примере выше), или таблица, создаваемая на лету через соединения или подзапросы.
3.2 WHERE — какие данные показываем
WHERE просто-напросто ведет себя как фильтр строк, которые мы хотим вывести. В нашем случае мы хотим видеть только те строки, где значение в колонке author — это “Dan Brown”.
3.3 SELECT — как показываем данные
Теперь, когда у нас есть все нужные нам колонки из нужной нам таблицы, нужно решить, как именно показывать эти данные. В нашем случае нужны только названия и идентификаторы книг, так что именно это мы и выберем с помощью SELECT . Заодно можно переименовать колонку используя AS .
Весь запрос можно визуализировать с помощью простой диаграммы:
4. Соединения (джойны)
Теперь мы хотим увидеть названия (не обязательно уникальные) всех книг Дэна Брауна, которые были взяты из библиотеки, и когда эти книги нужно вернуть:
Title | Return Date |
---|---|
The Lost Symbol | 2016-03-23 00:00:00 |
Inferno | 2016-04-13 00:00:00 |
The Lost Symbol | 2016-04-19 00:00:00 |
По большей части запрос похож на предыдущий за исключением секции FROM . Это означает, что мы запрашиваем данные из другой таблицы. Мы не обращаемся ни к таблице “books”, ни к таблице “borrowings”. Вместо этого мы обращаемся к новой таблице, которая создалась соединением этих двух таблиц.
borrowings JOIN books ON borrowings.bookid=books.bookid — это, считай, новая таблица, которая была сформирована комбинированием всех записей из таблиц «books» и «borrowings», в которых значения bookid совпадают. Результатом такого слияния будет:
А потом мы делаем запрос к этой таблице так же, как в примере выше. Это значит, что при соединении таблиц нужно заботиться только о том, как провести это соединение. А потом запрос становится таким же понятным, как в случае с «простым запросом» из пункта 3.
Давайте попробуем чуть более сложное соединение с двумя таблицами.
Теперь мы хотим получить имена и фамилии людей, которые взяли из библиотеки книги автора “Dan Brown”.
На этот раз давайте пойдем снизу вверх:
Шаг Step 1 — откуда берем данные? Чтобы получить нужный нам результат, нужно соединить таблицы “member” и “books” с таблицей “borrowings”. Секция JOIN будет выглядеть так:
Результат соединения можно увидеть по ссылке.
Шаг 2 — какие данные показываем? Нас интересуют только те данные, где автор книги — “Dan Brown”
Шаг 3 — как показываем данные? Теперь, когда данные получены, нужно просто вывести имя и фамилию тех, кто взял книги:
Супер! Осталось лишь объединить три составные части и сделать нужный нам запрос:
First Name | Last Name |
---|---|
Mike | Willis |
Ellen | Horton |
Ellen | Horton |
Отлично! Но имена повторяются (они не уникальны). Мы скоро это исправим.
5. Агрегирование
Грубо говоря, агрегирования нужны для конвертации нескольких строк в одну. При этом, во время агрегирования для разных колонок используется разная логика.
Давайте продолжим наш пример, в котором появляются повторяющиеся имена. Видно, что Ellen Horton взяла больше одной книги, но это не самый лучший способ показать эту информацию. Можно сделать другой запрос:
Что даст нам нужный результат:
First Name | Last Name | Number of books borrowed |
---|---|---|
Mike | Willis | 1 |
Ellen | Horton | 2 |
Почти все агрегации идут вместе с выражением GROUP BY . Эта штука превращает таблицу, которую можно было бы получить запросом, в группы таблиц. Каждая группа соответствует уникальному значению (или группе значений) колонки, которую мы указали в GROUP BY . В нашем примере мы конвертируем результат из прошлого упражнения в группу строк. Мы также проводим агрегирование с count , которая конвертирует несколько строк в целое значение (в нашем случае это количество строк). Потом это значение приписывается каждой группе.
Каждая строка в результате представляет собой результат агрегирования каждой группы.
Можно прийти к логическому выводу, что все поля в результате должны быть или указаны в GROUP BY , или по ним должно производиться агрегирование. Потому что все другие поля могут отличаться друг от друга в разных строках, и если выбирать их SELECT ‘ом, то непонятно, какие из возможных значений нужно брать.
В примере выше функция count обрабатывала все строки (так как мы считали количество строк). Другие функции вроде sum или max обрабатывают только указанные строки. Например, если мы хотим узнать количество книг, написанных каждым автором, то нужен такой запрос:
author | sum |
---|---|
Robin Sharma | 4 |
Dan Brown | 6 |
John Green | 3 |
Amish Tripathi | 2 |
Здесь функция sum обрабатывает только колонку stock и считает сумму всех значений в каждой группе.
6. Подзапросы
Подзапросы это обычные SQL-запросы, встроенные в более крупные запросы. Они делятся на три вида по типу возвращаемого результата.
6.1 Двумерная таблица
Есть запросы, которые возвращают несколько колонок. Хороший пример это запрос из прошлого упражнения по агрегированию. Будучи подзапросом, он просто вернет еще одну таблицу, по которой можно делать новые запросы. Продолжая предыдущее упражнение, если мы хотим узнать количество книг, написанных автором “Robin Sharma”, то один из возможных способов — использовать подзапросы:
author | sum |
---|---|
Robin Sharma | 4 |
6.2 Одномерный массив
Запросы, которые возвращают несколько строк одной колонки, можно использовать не только как двумерные таблицы, но и как массивы.
Допустим, мы хотим узнать названия и идентификаторы всех книг, написанных определенным автором, но только если в библиотеке таких книг больше трех. Разобьем это на два шага:
1. Получаем список авторов с количеством книг больше 3. Дополняя наш прошлый пример:
author |
---|
Robin Sharma |
Dan Brown |
Можно записать как: [‘Robin Sharma’, ‘Dan Brown’]
2. Теперь используем этот результат в новом запросе:
title | bookid |
---|---|
The Lost Symbol | 2 |
Who Will Cry When You Die? | 3 |
Inferno | 4 |
Это то же самое, что:
6.3 Отдельные значения
Бывают запросы, результатом которых являются всего одна строка и одна колонка. К ним можно относиться как к константным значениям, и их можно использовать везде, где используются значения, например, в операторах сравнения. Их также можно использовать в качестве двумерных таблиц или массивов, состоящих из одного элемента.
Давайте, к примеру, получим информацию о всех книгах, количество которых в библиотеке превышает среднее значение в данный момент.
Среднее количество можно получить таким образом:
avg |
---|
3.000 |
И это можно использовать в качестве скалярной величины 3 .
Теперь, наконец, можно написать весь запрос:
Это то же самое, что:
bookid | title | author | published | stock |
---|---|---|---|---|
3 | Who Will Cry When You Die? | Robin Sharma | 2006-06-15 00:00:00 | 4 |
7. Операции записи
Большинство операций записи в базе данных довольно просты, если сравнивать с более сложными операциями чтения.
7.1 Update
Синтаксис запроса UPDATE семантически совпадает с запросом на чтение. Единственное отличие в том, что вместо выбора колонок SELECT ‘ом, мы задаем знаения SET ‘ом.
Если все книги Дэна Брауна потерялись, то нужно обнулить значение количества. Запрос для этого будет таким:
WHERE делает то же самое, что раньше: выбирает строки. Вместо SELECT , который использовался при чтении, мы теперь используем SET . Однако, теперь нужно указать не только имя колонки, но и новое значение для этой колонки в выбранных строках.
7.2 Delete
Запрос DELETE это просто запрос SELECT или UPDATE без названий колонок. Серьезно. Как и в случае с SELECT и UPDATE , блок WHERE остается таким же: он выбирает строки, которые нужно удалить. Операция удаления уничтожает всю строку, так что не имеет смысла указывать отдельные колонки. Так что, если мы решим не обнулять количество книг Дэна Брауна, а вообще удалить все записи, то можно сделать такой запрос:
7.3 Insert
Пожалуй, единственное, что отличается от других типов запросов, это INSERT . Формат такой:
Где a , b , c это названия колонок, а x , y и z это значения, которые нужно вставить в эти колонки, в том же порядке. Вот, в принципе, и все.
Взглянем на конкретный пример. Вот запрос с INSERT , который заполняет всю таблицу «books»:
8. Проверка
Мы подошли к концу, предлагаю небольшой тест. Посмотрите на тот запрос в самом начале статьи. Можете разобраться в нем? Попробуйте разбить его на секции SELECT , FROM , WHERE , GROUP BY , и рассмотреть отдельные компоненты подзапросов.
Вот он в более удобном для чтения виде:
Этот запрос выводит список людей, которые взяли из библиотеки книгу, у которой общее количество выше среднего значения.
Full Name |
---|
Lida Tyler |
Надеюсь, вам удалось разобраться без проблем. Но если нет, то буду рад вашим комментариям и отзывам, чтобы я мог улучшить этот пост.
Источник