- Методы нанесения порошковых красок
- Сфера применения
- Виды порошковых красок
- Методы нанесения порошковых красок
- Электростатическое нанесение порошковой краски, особенности и виды
- Методы порошковой покраски
- Особенности четырех различных методов порошкового покрытия:
- Технологии порошкового окрашивания
- Подготовка поверхности
- Нанесение порошковой краски
- Полимеризация
- Типы порошковых красок
- Порошковые краски из эпоксидной смолы
- Порошковые краски из сложного полиэфира
- Гибридные порошковые краски с содержанием эпоксидной и полиэфирной смол
Методы нанесения порошковых красок
Современные методы нанесения порошковых красок позволяют получить долговечное и надёжное покрытие поверхностей, прежде всего металлических. Порошковая краска значительно превосходит жидкие аналоги по прочности и сроку эксплуатации.
В её составе — пигменты, плёнкообразователи, катализаторы для быстрого отверждения покрытия. Дисперсионной средой при окрашивании является воздух, а летучий растворитель в них полностью отсутствует, что удешевляет производство и делает сами краски безопасными — нетоксичными.
Сфера применения
Порошковый способ окраски используется, когда необходимо обеспечить прочность, долговечность, защитить изделие от коррозии, а в отдельных случаях осуществить дополнительную электроизоляцию.
Преимущество технологии порошкового напыления в том, что можно использовать различные методы нанесения порошковых красок, в том числе автоматические.
В промышленности порошковая покраска применяется для:
- защиты и повышения эстетичности металла, прежде всего — стали;
- профилей из алюминия любого назначения;
- кованых изделий;
- медицинской техники;
- офисной металлической мебели;
- бытовых приборов;
- оборудования для торговли.
Так как полимеризация красок происходит при повышенной температуре (180 градусов), порошковый метод покраски мало пригоден для деревянных и пластиковых предметов.
Виды порошковых красок
Наиболее широко используются термореактивные краски. (80% от всего объёма). Готовое покрытие образуется после значительных химических преобразований, и становится неплавким и нерастворимым.
Термопластичная краска работает без химических реакций при нанесении, только под действием температуры. Частицы красящего порошка сплавляются в плёнку, затем расплав охлаждается. Так как состав затвердевшего покрытия соответствует составу исходного материала, возможно вторичное использование после повторного плавления. В качестве плёнкообразователей применяются полиэфиры и олигомеры нейлона и винила.
Методы нанесения порошковых красок
1. Способ электростатического напыления — часто встречающийся способ порошковой окраски. Частица краски прилипает к поверхности за счёт электростатического взаимодействия. Порошок, который не прилип в процессе покраски, можно использовать ещё раз: в покрасочной камере есть специальное оборудование для её сбора.
2. Другой способ нанесения порошковой краски — воздушный поток направленного действия (fluidized bed). Частицы равномерно распределяются по окрашиваемому изделию, предварительно нагретого в камере. Чем точнее будет определена оптимальная температура нагревания, тем качественнее окажется покрытие. Автоматическое нанесение порошковой краски в «кипящем слое» используется в Москве при конвейерном производстве. Способ разработан для термопластичных красок, так как покрытие получается достаточно толстое. Окрашивают таким способом сетки или крупногабаритные плоские изделия. В ванну с пористым днищем подаётся под давлением воздух, в результате чего образуется псевдоожиженный слой краски. Окрашиваемые изделия нагреваются до температуры, превышающей температуру плавления самого окрашивающего материала. Время выдержки и температура обуславливают толщину покрытия. Если изделие крупногабаритное, то оно аккумулирует достаточное количество тепла, чтобы процесс отверждения покрытия прошёл до конца. Если же этого не произошло, например, при окрашивании металлоёмкой техники, изделие отправляется в камеру полимеризации на доотверждение. Преимущества способа: получение толстослойного покрытия всего за нанесение в один цикл.
3. Третий способ нанесения порошковой краски — применение открытого пламени (flame spray). Нанесение порошкового покрытия осуществляется пистолетом, оснащённым пропановой горелкой. При попадании в пламя горелки, частицы плавятся, и оказываются на окрашиваемой поверхности уже полужидкими. Само же окрашиваемое изделие предварительно не нужно нагревать. Метод окрашивания с помощью пламени используется для создания термопластичных покрытий.
Краска, прошедшая сквозь горящий пропан, формирует на поверхности прочный слой. Так как прямого нагревания окрашиваемого изделия не происходит, способ может использоваться не только для металла, но и для каучука, камня, композитов. Его успешно применяют для крупногабаритных или стационарно закреплённых объектов.
Электростатическое нанесение порошковой краски, особенности и виды
В промышленности используются два вида электростатического напыления: с зарядом частиц полем коронного разряда («корона»), или трибостатическое напыление, при котором частицы заряжаются трением о стенки напылителя.
1. Электростатическое нанесение Метод окрашивания коронарным зарядом требует высоковольтного оборудования. Коронный разряд ионизирует воздух, при прохождении через ионизированный слой краска электризуется.
При использовании этого способа могут появляться непрокрашенные участки в отверстиях изделия. Краска прежде всего, осаждается на выступающих его частях, следовательно, изделие, имеющее сложную конфигурацию, может быть окрашено неравномерно.
2. Трибостатическое нанесение Это нанесение краски с помощью воздушного потока, и удерживание её на окрашиваемой поверхности за счёт заряда, который частица получает при трении о диэлектрик – фторопласт. Из него изготавливаются рабочие узлы краскораспылителя. Трибостатические установки для окрашивания имеют меньшую стоимость.
Однако не любые краски можно зарядить трением достаточно сильно. Необходимо отбирать подходящие, или использовать специальные добавки.
Недостаток метода — быстрый износ пистолета, используемого для окрашивания. Но пазы и углубления прокрашиваются таким способом результативнее.
Дополнительный источник питания при таком способе не нужен, поэтому его себестоимость намного ниже. Кроме того, исключается риск возгорания от случайно возникшей искры. Нанесение оптимально для изделий сложной формы. Но нужно учесть, что степень электризации не так велика, и производительность у такого способа примерно в два раза ниже. Эффективность будет определяться размерами и формой деталей, а также временем, затраченным на саму операцию.
При трибостатическом способе нанесения порошкового покрытия скорость воздушного потока в камере не должна превышать 0,3 м/сек, это даст возможность избежать влияния турбулентности на равномерность нанесения.
Порошковый метод окрашивания — экологичное нанесение прочного и эстетичного окрашенного слоя, выполняющего защитную функцию. Сложность лишь в необходимости обязательного соблюдения всех технологических параметров, что предполагает наличие сложного оборудования или целой производственной линии.
Компания Евро-Декор уже много лет на рынке порошковых красок, мы поставляем качественную продукцию производственным организациям и несмотря на то, что сами не занимаемся окрашиванием можем порекомендовать наших партнеров.
Источник
Методы порошковой покраски
Есть четыре основных процесса порошковой покраски покрытий: электростатическое распыление, способ нанесения с помощью потока воздуха (fluidized bed), электростатическое распыление с помощью воздушного потока (electrostatic fluidized bed) и нанесение с помощью пламени (flame spray).
Электростатическое распыление – наиболее популярный на сегодняшний день метод порошковой покраски. Для всех прикладных методов, подготовка поверхности (то есть, очистка и конверсионное покрытие) должна создавать хорошую основу для нанесения покрытия. Поверхность должна быть подготовлена соответствующим образом.
Особенности четырех различных методов порошкового покрытия:
- В процессе электростатического распыления сухие порошковые частицы приобретают электрический заряд, в то время как окрашиваемая поверхность электрически нейтральна. Заряженный порошок и нейтральная рабочая область создают электростатическое поле, которое притягивает сухие частицы краски к поверхности. Попадая на окрашиваемую поверхность, порошковое покрытие сохраняет свой заряд, который удерживает порошок на поверхности. Окрашенная таким образом поверхность помещается в специальную печь, где частицы краски тают и впитываются поверхностью, постепенно теряя свой заряд.
- Второй метод нанесения предусматривает, что порошковые частицы краски удерживаются во взвешенном состоянии с помощью потока воздуха. Вступая в контакт с предварительно разогретой окрашиваемой поверхностью, эти частички тают и прочно удерживаются на ее поверхности. Толщина порошкового покрытия зависит от температуры, степени нагрева поверхности, а также от длительности контакта с порошковыми частицами. При нанесении покрытий из термопластика последующее нагревание в большинстве обычно не требуется. Однако для полного затвердевания порошкового покрытия в некоторых случаях необходимо дополнительное нагревание.
- Электростатический способ нанесения порошковой краски с помощью воздушного потока во многом схож с предыдущим, однако в этом случае поток воздуха, удерживающий частицы краски, электрически заряжен. Ионизированные молекулы воздуха заряжают частицы краски при движении наверх в специальной печи, куда помещают окрашиваемую поверхность, и формируют облако заряженных частиц. Окрашиваемая поверхность, обладающая нейтральным зарядом, покрывается слоем заряженных частиц. В этом случае предварительного нагревания окрашиваемой поверхности не требуется. Эта технология подходит для окрашивания небольших и простых по форме объектов.
- Метод окрашивания с помощью пламени появился сравнительно недавно и применялся, в основном, для порошковых покрытий из термопластика. Термопластический порошок плавится под воздействием сжатого воздуха и попадает в специальный пистолет, где проходит через горящий пропан. Расплавленные частицы краски наносятся на окрашиваемую поверхность, формируя прочный слой. Поскольку этот способ не требует прямого нагревания, он подходит для большинства материалов. С помощью данной технологии можно окрашивать поверхности из металла, древесины, каучука и камня. Нанесение краски с помощью пламени также подходит для больших или закрепленных объектов.
Выбор порошковой краски зависит от желаемых характеристик поверхности. Свойства порошков должны отвечать индивидуальным запросам клиента, предъявляемым по отношению к поверхностям. Порошковые покрытия подразделяются на разные категории, в зависимости от особенностей применения. Термопластические покрытия применяются для окрашивания более плотных поверхностей и обеспечивают покрытиям долговечность, в то время как термостатическое порошковое покрытие применяется для окраски более тонких материалов, в основном, в декоративных целях. В порошковых красках используются полиэтилен, поливинил, нейлон, фторполимеры, эпоксидная смола, полиэстер и акриловые смолы.
Источник
Технологии порошкового окрашивания
Подготовка поверхности
В начальной стадии любого процесса окрашивания производится предварительная обработка поверхности. Это самый трудоемкий и продолжительный процесс, которому часто не уделяют должного внимания, однако который является необходимым условием получения качественного покрытия.
Подготовка поверхности предопределяет:
— качество
— стойкость
— эластичность и долговечность покрытия
— способствует оптимальному сцеплению порошковой краски с окрашиваемой поверхностью и улучшению его антикоррозийных свойств
При удалении загрязнений с поверхности важно наиболее правильно подобрать метод обработки и состав, применяемый для этой цели. Их выбор зависит от материала обрабатываемой поверхности, вида, степени загрязнения, а также требованиями к условиям и срокам эксплуатации. Для предварительной обработки поверхности перед окрашиванием используются методы обезжиривания, удаления окисных пленок (абразивная очистка, травление) и нанесения конверсионного слоя (фосфатирование, хроматирование).
Процесс подготовки поверхности включает несколько этапов:
— очистка и обезжиривание поверхности;
— фосфатирование (фосфатами железа или цинка)
— споласкивание и закрепление;
— сушка покрытия.
На первом этапе происходит обезжиривание и очистка обрабатываемой поверхности. Она может производиться механическим или химическим способом.
При механической очистке используются стальные щетки или шлифовальные диски, также в зависимости от размеров поверхности возможна ее притирка чистой тканью, смоченной в растворителе. Химическая очистка осуществляется с использованием щелочных, кислотных или нейтральных веществ, а также растворителей, применяющихся в зависимости от вида и степени загрязнения, типа, материала и размера обрабатываемой поверхности и т.д.
При обработке химическим составом детали могут погружаться в ванну с раствором или подвергаться струйной обработке (раствор подается под давлением через специальные отверстия). В последнем случае эффективность обработки значительно повышается, поскольку поверхность подвергается еще и механическому воздействию, к тому же, осуществляется непрерывное поступление чистого раствора к поверхности.
Нанесение конверсионного подслоя предотвращает попадание под покрытие влаги и загрязнений, вызывающих отслаивание и дальнейшее разрушение покрытия.
Фосфатирование и хроматирование обрабатываемой поверхности с нанесением тонкого слоя неорганической краски способствует улучшению адгезии («сцепляемости») поверхности с краской и предохраняет ее от ржавчины, повышая ее антикоррозийные свойства. Обычно поверхность обрабатывается фосфатом железа (для стальных поверхностей), цинка (для гальванических элементов), хрома (для алюминиевых материалов) или марганца, а также хромового ангидрида. Для алюминия и его сплавов часто применяют методы хроматирования или анодирования. Обработка фосфатом цинка обеспечивает наилучшую защиту от коррозии, однако этот процесс более сложный, чем остальные. Фосфатирование может увеличить сцепление краски с поверхностью в 2-3 раза.
Для удаления окислов (к ним относятся окалина, ржавчина и окисные пленки) используется абразивная чистка, (дробеструйная, дробеметная, механическая) и химическая очистка (травление).
Абразивная очистка осуществляется при помощи абразивных частиц (песка, дроби), стальных или чугунных гранул, а также скорлупы ореха, подающихся на поверхность с большой скоростью с помощью сжатого воздуха или при помощи центробежной силы. Абразивные частицы ударяются о поверхность, откалывая кусочки металла со ржавчиной или окалиной и другими загрязнениями. Такая очистка повышает адгезию покрытия.
Следует помнить, что абразивная очистка может применяться только к материалам, толщина которых составляет более 3 мм. Большую роль играет правильный выбор материала, поскольку слишком крупная дробь может привести к большой шероховатости поверхности, и покрытие будет ложиться неравномерно.
Травление представляет собой удаление загрязнений, окислов и ржавчины путем применения травильных растворов на основе серной, соляной, фосфорной, азотной кислоты или едкого натра. Растворы содержат ингибиторы, которые замедляют растворение уже очищенных участков поверхности.
Химическая очистка отличается большей производительностью и простотой применения, чем абразивная, однако после нее необходимо промывать поверхность от растворов, что вызывает необходимость применения дополнительных очистных сооружений.
На заключительной стадии подготовки поверхности используется пассивирование поверхности, то есть ее обработка соединениями хрома и нитрата натрия. Пассивирование предотвращает появление вторичной коррозии. Его можно применять как после обезжиривания поверхности, так и после фосфатирования или хроматирования поверхности.
После споласкивания и сушки поверхность готова для нанесения порошкового покрытия.
После того как детали покидают участок предварительной обработки, они ополаскиваются и высушиваются. Сушка деталей производится в отдельной печи или в специальной секции печи отвержения. При использовании печи отвержения для просушки размеры системы снижаются, и отпадает необходимость использования дополнительного оборудования.
Нанесение порошковой краски
Когда детали полностью просушиваются, они охлаждаются при температуре воздуха. После этого они помещаются в камеру напыления, где на них наносится порошковая краска. Основное назначения камеры заключается в улавливании порошковых частиц, не осевших на изделии, утилизации краски и предотвращении ее попадания в помещение. Она оснащена системой фильтров и встроенными средствами очистки (например, бункерами, виброситом и т.д.), а также системами отсоса. Камеры делятся на тупиковые и проходные. Обычно в тупиковых камерах окрашиваются малогабаритные изделия, а в проходных – длинномерные.
Также существуют автоматические камеры напыления, в которых с помощью пистолетов-манипуляторов краска наносится за считанные секунды. Наиболее распространенным способом нанесения порошковых покрытий является электростатическое напыление. Оно представляет собой нанесение на заземленное изделие электростатически заряженного порошка при помощи пневматического распылителя (их также называют пульверизаторами, пистолетами и аппликаторами).
Любой распылитель сочетает в себе ряд различных режимов работы:
— напряжение может распространяться как вверх, так и вниз
— может регулироваться сила потока (напор, течение струи) краски, а также скорость выхода порошка — может меняться расстояние от выхода распылителя до детали, а также размер частиц краски
Сначала порошковая краска засыпается в питатель. Через пористую перегородку питателя подается воздух под давлением, который переводит порошок во взвешенное состояние, образовывая так называемый «кипящий слой» краски. Сжатый воздух может также подаваться компрессором, создавая при этом местную область «кипящего слоя». Далее аэровзвесь забирается из контейнера при помощи воздушного насоса (эжектора), разбавляется воздухом до более низкой концентрации и подается в напылитель, где порошковая краска за счет фрикции (трения) приобретает электростатический заряд. Это происходит следующим образом. Зарядному электроду, расположенному в главном ружье, сообщается высокое напряжение, за счет чего вырабатывается электрический градиент. Это создает электрическое поле вблизи электронов. Частицы, несущие заряд, противоположный заряду электрода, притягиваются к нему. Когда частицы краски прогоняются через это пространство, частицы воздуха сообщают им электрический заряд.
При помощи сжатого воздуха заряженная порошковая краска попадает на нейтрально заряженную поверхность, оседает и удерживается на ней за счет электростатического притяжения.
Различают две разновидности электростатического распыления:
— электростатическое с зарядкой частиц в поле коронарного заряда
— трибостатическое напыление
При электростатическом способе напыления частицы получают заряд от внешнего источника электроэнергии (например, коронирующего электрода), а при трибостатическом — в результате их трения о стенки турбины напылителя.
При первом способе нанесения краски применяется высоковольтная аппаратура.
Порошковая краска приобретает электрический заряд через ионизированный воздух в области коронного разряда между электродами заряжающей головки и окрашиваемой поверхностью. Коронный разряд поддерживается источником высокого напряжения, встроенным в распылитель. Недостатком этого способа считается то, что при его использовании могут возникать затруднения с нанесением краски на поверхности с глухими отверстиями и углублениями. Поскольку частицы краски прежде осаждаются на выступающих участках поверхности, она может быть прокрашена неравномерно.
При трибостатическом напылении краска наносится с помощью сжатого воздуха и удерживается на поверхности за счет заряда, приобретаемого в результате трения о диэлектрик. «Трибо» в переводе означает «трение». В качестве диэлектрика используется фторопласт, из которого изготовлены отдельные части краскораспылителя. При трибостатическом напылении источник питания не требуется, поэтому этот метод гораздо дешевле. Его применяют для окрашивания деталей, имеющих сложную форму. К недостаткам трибостатического метода можно отнести низкую степень электризации, которая заметно снижает его производительность в 1.5-2 раза по сравнению с электростатическим.
На качество покрытия может влиять объем и сопротивление краски, форма и размеры частиц. Эффективность процесса также зависит от размеров и формы детали, конфигурации оборудования, а также времени, затраченного на покраску.
В отличие от традиционных способов окрашивания, порошковая краска не теряется безвозвратно, а попадает в систему регенерации камеры напыления и может использоваться повторно. В камере поддерживается пониженное давление, которое препятствует выходу из нее частиц порошка, поэтому необходимость в применении рабочими респираторов практически отпадает.
Полимеризация
На заключительной стадии окрашивания происходит плавление и полимеризация нанесенной на изделие порошковой краски в камере полимеризации.
После нанесения порошковой краски изделие направляется на стадию формирования покрытия. Она включает оплавление слоя краски, последующее получение пленки покрытия, его отвержения и охлаждения. Процесс оплавления происходит в специальной печи оплавления и полимеризации. Существует много разновидностей камер полимеризации, их конструкция может меняться в зависимости от условий и особенностей производства на конкретном предприятии. С виду печь представляет собой сушильный шкаф с электронной «начинкой». При помощи блока управления можно контролировать температурный режим печи, время окрашивания и настраивать таймер для автоматического отключения печи при завершении процесса. Источниками энергии для печей полимеризации могут служить электричество, природный газ и даже мазут.
Печи делятся на проходные и тупиковые, горизонтальные и вертикальные, одно- и многоходовые. Для тупиковых печей важным моментом является скорость подъема температуры. Этому требованию в наибольшей степени соответствуют печи с рециркуляцией воздуха. Камеры нанесения из диэлектриков с электропроводным покрытием обеспечивают равномерное распределение порошковой краски на поверхности детали, однако при неправильном использовании они могут накапливать электрические заряды и представлять опасность.
Оплавление и полимеризация происходит при температуре 150-220 °С в течение 15-30 минут, после чего порошковая краска образует пленку (полимеризуется). Основным требованием, предъявляемым к камерам полимеризации, является поддержание постоянной заданной температуры (в разных частях печи допускается разброс температуры не менее 5°С) для равномерного прогрева изделия.
При нагреве в печи изделия с нанесенным слоем порошковой краски частицы краски расплавляются, переходят в вязкое состояние и сливаются в непрерывную пленку, при этом вытесняя воздух, находившийся в слое порошковой краски. Часть воздуха может все же оставаться в пленке, образовывая поры, ухудшающие качество покрытия. Для избежания появления пор окраску следует проводить при температуре, превышающей температуру плавления краски, а покрытие наносить тонким слоем.
При дальнейшем нагревании изделия краска глубоко проникает в поверхность и затем отвердевает. На этом этапе формируется покрытие с заданными характеристиками структуры, внешнего вида, прочности, защитных свойств и т.д.
При окраске больших металлических деталей температура их поверхности поднимается значительно медленнее, чем у тонкостенных изделий, поэтому покрытие не успевает полностью затвердеть, в результате чего снижается его прочность и адгезия. В этом случае деталь предварительно нагревают или увеличивают время его отвержения.
Отвержение рекомендуется производить при более низких температурах и в течение более продолжительного периода времени. При таком режиме снижается вероятность возникновения дефектов, и улучшаются механические свойства покрытия.
На время получения необходимой температуры на поверхности изделия влияют масса изделия и свойства материала, из которого изготовлена деталь.
После отвержения поверхность подвергается охлаждению, которое обеспечивается за счет удлинения конвейерной цепи. Также для этой цели используются специальные камеры охлаждения, которые могут являться частью печи отвержения.
Соответствующий режим для формирования покрытия необходимо подбирать с учетом вида порошковой краски, особенностей окрашиваемого изделия, типа печи т.д. Необходимо помнить, что для нанесения порошкового покрытия решающую роль играет температура, особенно при нанесении покрытия на термостойкие пластмассы или изделия из древесины.
По окончании полимеризации изделие охлаждается на воздухе. После остывания изделия покрытие готово.
Типы порошковых красок
Порошковые краски из эпоксидной смолы
Используются порошки из эпоксидной смолы которые обеспечивают высокую степень глянцевитости гладкости покрытия, отличные характеристики по адгезии, гибкости и твердости, а также стойкость к химическому воздействию и к растворителям.
Основными недостатками являются низкая теплоустойчивость и светоустойчивость, а также выраженная тенденция желтеть при повышении температуры и под воздействием рассеянного дневного света. Акриловые порошковые краски: широко используются при нанесении покрытий на поверхности; имеют хорошую степень сохранения таких характеристик, как глянец и цвет, под воздействием внешних раздражителей, а также обладают стойкостью по отношению к тепловому воздействию и щелочным средам.
Порошковые краски из сложного полиэфира
Общие характеристики совпадают с характеристиками порошков из эпоксидной и акриловой смол. Такие порошки обладают высокой прочностью и высокой устойчивостью к пожелтению под воздействием ультрафиолетового света. Большая часть покрытий, имеющихся на зданиях в настоящее время, основана на линейных полиэфирах.
Гибридные порошковые краски с содержанием эпоксидной и полиэфирной смол
Содержат в качестве компонента большую часть (иногда более 50%) специальной полиэфирной смолы. Свойства таких гибридов напоминают свойства порошков из эпоксидной смолы, однако, их дополнительным преимуществом является повышенная стойкость к пожелтению в результате пересушки и улучшенная способность переносить погодные условия. В настоящее время гибридные порошки считаются основой отрасли порошковых красок.
Полиуретановые порошковые краски: обладают ровным набором хороших физических и химических характеристик, а также обеспечивают хорошую прочность внешней стороны.
Источник