Способы намагничивания деталей при мпк

Магнитопорошковый контроль – простой и наглядный вид НК ферромагнитных материалов

Из всех направлений магнитной дефектоскопии самым популярным по праву считается магнитопорошковый контроль (сокращённо – МПД). Вкратце: на изделие наносят сухой порошок либо суспензию, затем объект намагничивают. В местах несплошности силовые линии магнитного поля выходят на поверхность, образуя полюса на краях дефекта и тем самым притягивая ферромагнитные частицы. В зоне имеющихся несплошностей скапливаются валики магнитных частиц. Так образуется индикаторный рисунок, по которому можно обнаруживать (но не измерять!) поверхностных и подповерхностных (на глубине до 2 мм) дефектов. Магнитопорошковый метод неразрушающего контроля позволяет выявлять трещины, поры, расслоения и инородные включения, недоступные для визуального и измерительного контроля и зачастую закладывается в руководящих НТД в качестве альтернативы цветной дефектоскопии. По сравнению с ней МПД привлекательны меньшими требованиями к шероховатости поверхности (Ra 6,3 мкм, Rz 40 мкм). Для сравнения: перед проведением ПВК необходимо зачистить поверхность до шероховатости Ra 3,2 мкм (20 мкм).

Магнитопорошковый контроль распространён в самых разных отраслях. Вот лишь краткий перечень изделий (конструкций, механизмов, заготовок), которые проверяют при помощи данного вида НК:

  • стальные трубы и трубопроводы (в первую очередь – сварные соединения, но встречается также МПД основного металла);
  • литые изделия;
  • комплектующие грузоподъёмных машин (подвесные крюки, шестерни, узлы лебёдок, талей, цепи и прочее);
  • боковые рамы, оси колёсных пар, надрессорных балок и иных деталей грузовых и пассажирских вагонов и локомотивов. Магнитопорошковый метод – один из основных в железнодорожной отрасли;
  • клепаные и болтовые соединения несущих металлоконструкций (к примеру, пролётов эстакад);
  • бурильные трубы;
  • муфты, зубчатые колёса, корпуса сосудов, насосных агрегатов и т.д.

Метод успешно используется на самых ответственных объектах «Газпрома», «Транснефти», «Роснефти», «РЖД», «Росатома» и других крупных предприятий.

Сильные и слабые стороны магнитопорошкового контроля

Способы магнитопорошкового контроля

Другая классификация методов магнитопорошкового контроля основана на таком параметре, как физическое состояние магнитного порошка. По данному критерию также выделяют два способа проведения контроля:

  • сухой. Порошок из металлических частиц (например, закиси-окиси железа) наносится, «как есть», без добавления каких-либо растворов и пр. Порошки изготавливают из тщательно просеянной и измельчённой железной окалины, магнетита, никеля, карбонильного железа и пр. Для лучшей заметности материалы могут иметь белый, красный или жёлтый цвет. Сухой метод магнитопорошкового контроля подходит для дефектов поверхностного и подповерхностного типа. Намагничивание выполняется постоянным либо переменным током 300–600А при помощи П-образных электромагнитов. Чтобы нанести индикаторы, удобно использовать резиновые груши, пульверизаторы, подвижные сита и прочие приспособления;
  • мокрый. Частицы порошка находятся во взвешенном состоянии – в воде, масле, керосине или специальном концентрате с поверхностно-активными добавками. Наносить можно кистью, погружением, поливом и пр. Мокрый способ эффективен для поиска поверхностных несплошностей.

Виды намагничивания

Главные процедуры магнитопорошкового контроля

МПД проводится в строгом соответствии с технологической инструкцией (картой) и руководящей документацией, актуальной для отрасли и предприятия. К таковой нормативно-технической документации относятся, например, ГОСТ Р 56512-2015, ГОСТ Р ИСО 10893-5-2016 и пр. Помимо самой методики, в НТД содержатся подробные указания о типах и характеристиках недопустимых дефектов.

В традиционном виде магнитопорошковый метод предполагает следующие этапы контроля.

  1. Подготовка. Нужно изучить технологическую карту, выбрать индикаторные материалы, аппаратуру, убедиться в надлежащем метрологическом обеспечении. Определиться со схемой и способом намагничивания, типом и величиной тока. Проследить за тем, что зона контроля (по 20 мм околошовной стороны с каждой стороны сварного шва) зачищена. Проверить шероховатость при помощи аттестованных образцов или профилографов (профилометров). При необходимости разделить периметр на участки на 300-500 мм или обозначить начало отсчёта и закрепить мерительный пояс. Непосредственно перед контролем протереть поверхность чистой сухой ветошью и убедиться, что на ОК нет остатков ворса и иных препятствий для магнитного порошка. Если будет использоваться суспензия на водной основе, ОК предварительно нужно просушить. Работоспособность намагничивающего устройства и магнитного порошка проверяется по аттестованным контрольным образцам. Для получения более контрастного индикаторного рисунка на поверхность можно нанести белую фоновую краску (толщина слоя — до 20 мкм).
  2. Намагничивание. Для выявления поверхностных дефектов требуется переменный либо импульсный ток. Постоянный и выпрямленный ток эффективен как для поверхностных, так и для подповерхностных слоёв (на глубине в пределах 2 мм). Чтобы не допустить локального нагревания и возникновения прожогов при СПП, намагничивание рекомендовано проводить в прерывистом режиме «ток-пауза» (5-6 циклов длительностью 0,1-3 с, продолжительность пауз — от 1 до 5 с). Намагничивание производят поочерёдно в двух взаимно перпендикулярных направлениях, регулируя межполюсное расстояние в диапазоне 70-250 мм. Чтобы обеспечить 100% контроль всей зоны, важно не забыть про зону невыявляемости — до 20 мм вблизи полюсов.
  3. Нанесение индикатора. Он должен покрывать всю исследуемую зону, включая труднодоступные ниши, глухие отверстия, пазы и пр. При использовании аэрозольных баллонов нужно следить за тем, чтобы расстояние между соплом и поверхностью составляло 200–300 мм. Перед проведением осмотра нужно дать излишкам суспензии стечь с ОК.
  4. Осмотр. Этот этап магнитопорошкового контроля выполняется после стекания излишков индикатора. Выявленные несплошности тщательно осматривают при помощи оптических инструментов и приборов. В стационарных установках применяются автоматизированные системы расшифровки индикаторных рисунков. При ручном проведении дефектоскопии протяжённость и координаты несплошностей замеряют линейками, угольниками и кронциркулями из немагнитных материалов. По характеру индикаторного следа можно определить тип дефекта. Тонкие удлинённые линии указывают на плоскостные дефекты, округлые рисунки – на объёмные поры, включения и раковины. Если осаждение порошка не имеет чётких контуров, это служит косвенным признаком подповерхностных несплошностей. В зависимости от требований к чувствительности подбирается комбинированное освещение рабочей зоны с использованием разрядных и галогенных ламп. Для защиты от бликов предпочтительны светильники с рассеивателями и отражателями. Обязательна возможность регулировки интенсивности освещения. При работе с люминесцентными индикаторами задействуются источники ультрафиолетового излучения 2000 мкВт/кв. см и выше с длиной волны 315–400 нм.
  5. Регистрация результатов магнитопорошкового контроля. Прежде всего, вносят соответствующие записи в протокол (заключение или акт) и журнал. К описанию и схематическому изображению могут прилагаться дефектограммы – фотографию или слепок (отпечаток на клейкой ленте) индикаторного рисунка. Места выявленных дефектов могут также отображаться на эскизе ОК. Файлы могут быть переданы на ПК и продублированы на USB-носителе. Если того требует инструкция, на годные участки и выявленные дефекты наносят маркировку – непосредственно по поверхности объекта.
  6. Размагничивание. Остаточную намагниченность нужно убирать, так как она может спровоцировать скопление продуктов износа, мешает корректной работе электроаппаратуры и негативно влияет на последующую обработку изделия.
Читайте также:  Какие способы идентификации имеются

Оборудование и расходники для магнитопорошкового метода контроля

Прежде всего, не обойтись без индикаторных материалов – порошков, суспензий, готовых аэрозолей, магнитогуммированных паст и пр. Последние представляют собой затвердевающую консистентную смесь из ферромагнитного порошка, пластификаторов и вспомогательных добавок. Изготавливаются на основе хлоркаучука и полимеров. Предназначаются для труднодоступных участков.

Для магнитопорошкового метода контроля используются порошки естественного (чёрного либо красно-коричневого) цвета, а также окрашенные в более контрастные тона – жёлтый, красный, белый и пр. Отдельная категория – люминесцирующие материалы для получения более чётких и ярких индикаторных рисунков.

Порошок не должен неприятно пахнуть, а химический состав не должен быть токсичным. Выявляющую способность периодически проверяют при помощи профильных СИ и контрольных образцов с искусственными или естественными дефектами (трещинами, пропилами, отверстиями).

Что касается аппаратуры, то для магнитопорошкового контроля предусмотрены следующие виды оборудования:

  • дефектоскопы. Бывают стационарные и переносные, универсальные и специализированные (к примеру, галтелей малого радиуса). В отдельную группу можно выделить автоматизированные системы МПД на производствах, где собственно дефектоскоп – лишь один из модулей, а поиск и распознавание дефектов осуществляет специальная система;
  • намагничивающие устройства (соленоиды, электромагниты, «ярмо»), постоянные магниты и размагничивающие устройства;
  • средства измерения магнитных полей напряжённости и индукции (магнитометры, ферритометры и гауссметры);
  • ультрафиолетовые светильники и приборы для проверки уровня освещённости;
  • контрольные образцы – для оценки качества порошков, концентратов, паст и суспензий, калибровки и настройки дефектоскопов (в первую очередь, МО-4);
  • магнитные индикаторные полоски;
  • ASTM-колбы для оценки концентрации взвешенных магнитных частиц в жидких растворах;
  • приспособления для осмотра индикаторных следов – лупы, микроскопы, зеркала и т.д.

Требования к дефектоскопам для магнитопорошкового контроля содержатся в ГОСТ Р 53700-2009. При выборе модели учитывают поддержку способов СОН и/или СПП, напряжение питания, минимальное и предельную величину намагничивающего тока, его вид, плавность регулировки и т.д.

В качестве альтернативы дефектоскопам используются более компактные портативные электромагниты и соленоиды. Дополнительно к ним рекомендовано применять блок регулирования тока.

Обучение и аттестация специалистов магнитопорошкового контроля

Программы подготовки включают в себя теоретические и практические занятия по металловедению, видам и способам намагничивания, технологическим процедурам МПД, изучению материалов и средств проведения дефектоскопии. Для дефектоскопии на объектах, подведомственных Ростехнадзору, требуется аттестация персонала на I, II и III уровня в соответствии с СДАНК-02-2021 или СНК ОПО РОНКТД-02-2021 (в зависимости от того, в какой Системе НК нужно подтвердить компетенцию, чтобы зайти на объект заказчика).

Читайте также:  Что такое надлежащий способ исполнения обязательства

Источник

Способы намагничивания деталей

Различают три способа на­магничивания: полюсное, циркулярное и комбинированное.

Полюсным намагничиванием создают продольное маг­нитное поле (вдоль детали). Деталь помещают между по­люсами электромагнита (постоянного магнита) или в маг­нитное поле соленоида. Это намагничивание применяют для выявления дефектов, расположенных перпендикулярно к продольной оси детали или под углом к ней не менее 20-25°.

Циркулярнымнамагничиванием создают магнитное поле, магнитные силовые линии которого расположены в виде замкнутых концентрических окружностей. Через де­таль пропускают электрический ток. При необходимости обнаружения дефекта на внутренней цилиндрической по­верхности ток пропускают через стержень или кабель из немагнитного материала (медь, латунь, алюминий), поме­щенный в отверстие детали. Это намагничивание служит для нахождения дефектов, расположенных вдоль продоль­ной оси детали или под небольшим углом к ней.

Комбинированное намагничивание заключается в од­новременном воздействии на деталь двух взаимно перпен­дикулярных магнитных полей. В результате их сложения образуется результирующее магнитное поле, величина и направление которого зависят от вектора магнитной на­пряженности каждого из слагаемых. Для получения ком­бинированного магнитного поля обычно через деталь про­пускают электрический ток, создавая в ней циркулярное магнитное поле, и одновременно помещают в соленоид (или электромагнит), создавая продольное магнитное поле.

Магнитные силовые линии результирующего поля на­правлены по винтовым линиям к поверхности изделия, что позволяет обнаруживать дефекты разной направлен­ности.

В магнитном поле или в поле остаточной намагничен­ности выявляют дефекты с помощью магнитного порошка или суспензии. В магнитном поле определяют дефекты деталей, изготовленных из магнитомягких материалов (ст. 3, сталь 10, сталь 20 и др.), обладающих небольшой коэр­цитивной силой (напряженностью магнитного поля, необ­ходимого для полного размагничивания материала).

При контроле в поле остаточной намагниченности де­таль предварительно намагничивают и после снятия на­магничивающего поля определяют дефект. Этот способ применяют для деталей, изготовленных из магнитожестких материалов— легированных и высокоуглеродистых сталей, подвергнутых термообработке. Его преимущество заключается в простоте и универсальности визуального контроля и отсутствии прижогов на деталях в местах кон­такта с электродами дефектоскопа.

Комбинированное намагничивание проводят только в приложенном магнитном поле, а циркулярное и полюс­ное — в приложенном поле и в поле остаточной намагни­ченности.

Для намагничивания деталей может быть использован как переменный, так и постоянный ток. Переменный ток служит для нахождения поверхностных дефектов и раз­магничивания деталей. Действие магнитного поля пере­менного тока ограничивается поверхностными слоями из­делия.

Постоянный ток применяют для выявления подповерх­ностных дефектов. Создаваемое им магнитное поле одно­родно и проникает достаточно глубоко в деталь.

Для определения дефекта большое значение имеет пра­вильный выбор напряженности магнитного поля. Чрезмер­но большая напряженность приводит к осаждению маг­нитного порошка по всей поверхности изделия и появле­нию «ложных» дефектов, а недостаточная— к снижению чувствительности метода.

Для индификации дефектов применяют ферромагнитные порошки с большой магнитной проницаемостью и малой коэрцитивной силой. Порошок магнетита (Ге304) черного или темно-коричневого цвета используют для контроля деталей со светлой поверхностью, а порошок оксида желе­за (Ре203) буро-красного цвета — с темной поверхностью. Зернистость порошка существенно влияет на обнаружение дефектов и должна быть 5-10 мкм.

Магнитную суспензию приготавливают, используя ке­росин, трансформаторное масло, смесь минерального мас­ла с керосином и водные растворы некоторых веществ. На 1 л жидкости добавляют 30-50 г магнитного порошка.

После контроля все детали, кроме бракованных, раз­магничивают. Восстановление неразмагниченных деталей механической обработкой может привести к повреждению рабочих поверхностей из-за притягивания стружки. Не следует размагничивать детали, подвергающиеся при вос­становлении нагреву сварочно-наплавочными и другими способами до температуры 600-700 °С.

Детали размагничивают, воздействуя на них перемен­ным магнитным полем, изменяющимся от максимального значения напряженности до нуля.

Крупногабаритные детали (коленчатые и распредели­тельные валы и др.) размагничивают, пропуская через них ток, постепенно уменьшая его значение до нуля. Детали с отношением длины к ширине, равным более пяти, размаг­ничивают перемещением их через открытый соленоид.

Короткие изделия с большим поперечным сечением размагничиваются плохо. Поэтому их предварительно со­единяют в пакет и располагают вдоль оси соленоида.

Степень размагниченности контролируют, осыпая де­тали стальным порошком. У хорошо размагниченных де­талей порошок не должен удерживаться на поверхности. Для этих же целей применяют приборы ПКР-1, снабжен­ные феррозондовыми полюсоискателями.

Ультразвуковой метод — разновидность акустических методов контроля дефектов. Метод основан на свойстве ультразвуковых колебаний (волн) прямолинейно распрос­траняться в однородном твердом теле и отражаться от гра­ниц раздела сред с различными акустическими сопротив­лениями, в том числе нарушенной сплошности материала (трещин, раковин, расслоений и др.).

Ультразвуковой метод контроля использует законы распространения, преломления и отражения упругих волн частотой 0,524 МГц. При наличии дефектов в металле поле упругой волны изменяет в окрестностях дефекта свою структуру. Этот метод контроля позволя­ет выявить мелкие дефекты до 1 мм.

Читайте также:  Винтовые сваи способы погружения

Существуют несколько методов ультразвуковой дефектоскопии. Наибольшее распространение по­лучили теневой и импульсный методы. Для возбуждения упругих ко­лебаний в различных материалах наибольшее распространение полу­чили пьезоэлектрические преобразователи, которые представляют собой пластину из монокристалла кварца или из пьезокерамических материалов, на поверхность которых наносят тонкие слои серебра.

Рис. 31. Схема импульсного ультразвукового дефектоскопа:

1 — контролируемая деталь; 2— пьезоэлектрический преобразователь (щуп);3— генератор ультразвуковых колебаний с синхронизаторами и блоком обработки сигналов; 4— генератор ждущей развёртки; 5 — блок — усилитель; 6— видеоусилитель; 7— элетронно – лучевая трубка.

Схема импульсного ультразвукового дефектоскопа мо­жет быть представлена в виде, показанном на рис. 31.

Теневой метод основан на сквозном прозвучивании. При теневом методе ультразвуковые колебания (УЗ К) вводятся в деталь с одной стороны, а принимаются с другой От генератора 6 электрические импульсы ультразвуковой частоты по­ступают к пьезоэлектрическому излучателю 5, преобразующему их в ультразвуковые колебания. Импульсы проходят через деталь4. Ес­ли деталь не имеет дефекта, то УЗК достигнут пьезоприемника 3. УЗК преобразовываются в электрические импульсы и усиливаются в усилителе 2, после чего они попадают в индикатор 1, стрелка которого отклонится (рис. 6.9,)

Рис. 6.9. Схема ультразвукового контроля деталей теневым методом: а —без дефекта; б— с дефектом; 1— индикатор; 2— усилитель; 3— пьезоприемник; 4 —деталь; 5 — излучатель; 6 —генератор; 7 — дефект

При отсутствии в детали дефектов колебания, прошед­шие через нее, будут восприняты и преобразованы в элек­трический сигнал пьезоприемником, усилены усилителем 2 и поданы на индикатор (электронно-лучевую трубку ос­циллографа) почти без изменений амплитуды. Ели на пути пучка УЗК встречается дефект, то амплитуда на экране прибора будет меньше исходного значения. Мощность вос­принятого сигнала зависит от площади сечения пучка ко­лебаний, площади сечения дефекта и глубины его залега­ния. В случае, если дефект полностью перекроет пучок, показания прибора будут равны нулю.

Недостаток этого метода заключается в необходимости доступа к изделию с двух сторон, что не всегда возможно, а также в необходимости синхронного перемещения пьезоизлучателя и пьезоприемника по поверхности детали.

Если на пути УЗК встретится дефект 7 (рис. 6.9, б), то послан­ные излучателем УЗК отразятся от дефекта и не попадут на при­емник, поскольку он находится в звуковой тени. Стрелка индикатора 1 не будет отклоняться от нулевого положения. Этот метод используют при контроле деталей небольшой толщины. Недоста­ток метода — это необходимость двухстороннего доступа к конт­ролируемой детали.

Импульсный метод контроля основан на явлении отражения УЗКот границы раздела веществ. Высокочастотный генератор им­пульсного дефектоскопа (рис. 6.10) вырабатывает импульсы опре­деленной длины, которые направляются преобразователем в кон­тролируемую деталь. После отражения импульс возвращается к преобразователю, который в это время переключается на прием, оттуда отраженный импульс через усилитель поступает на экран электронно-лучевой трубки (ЭЛТ).

Рис. 6.10. Структурная схема импульсного ультрозвукового дефектоскопа: 1— контролируемая деталь; 2— дефект; 3— преобразователь; 4— усилитель; 5 — генератор; 6— синхронизатор; 7 — блок развертки; / — III— импульсы соответственно зондирующий, от дефекта, донный; В —относительный размер дефекта; к— толщина детали; а —глубина расположения дефекта

Работой высокочастотного генератора управляет синхронизатор, который формирует частоту следования импульсов. Кроме того, син­хронизатор запускает блок развертки. Частота следования высоко­частотных импульсов устанавливается с таким расчетом, чтобы в за­висимости от размеров детали отраженный импульс приходил к пре­образователю раньше посылки следующего импульса. Длительность импульса должна составлять не менее одного периода колебаний.

При отсутствии дефекта в детали на экране ЭЛТ будет два им­пульса (зондирующий и донный), расстояние между которыми соответствует толщине детали. Если внутри детали имеется дефект, то между зондирующим и донным импульсами появится импульс, отраженный от дефекта (см. рис. 6.10). Расстояние между зондиру­ющим импульсом и отраженным от дефекта определяет глубину расположения дефекта. Чем больше дефект, тем больше акусти­ческой энергии от него отразится, тем больше будет амплитуда импульса, отраженного от дефекта. По этой амплитуде можно опре­делить относительный размер дефекта.

Достоинства метода: односторонний доступ к детали; возмож­ность определения размеров и расположения дефекта по глубине; высокая чувствительность. Недостаток метода — это наличие «мертвой» зоны, которая представляет собой неконтролируемый по­верхностный слой, из-за которого на экране ЭЛТ отраженный от дефекта импульс совпадает с зондирующим импульсом.

Для ультразвукового контроля используют дефектоскопы УДМ-3, УДЦ-100, УДЦ-105М, ДУК-66, УЗД-НИИМ-5, УЗД-7Н, УД-10П, УД-11ПУ и др.

Источник

Оцените статью
Разные способы