Способы нахождения рангов матриц

Нахождение ранга матрицы — примеры решения

Что такое ранг матрицы — понятие, для чего используется

Возьмем случайную матрицу \(\undersetA\) и натуральное число k, меньшее или равное числам m и n. Вычеркивая в ней произвольным образом (m — k) строк и (n — k) столбцов, мы получим квадратные подматрицы меньше размера исходной, k-го порядка. Определители таких подматриц будут минорами k-го порядка матрицы \(\undersetA.\)

Минор k-го порядка матрицы A — это определитель k-го порядка с элементами, которые расположены на пересечении любых k строк и любых k столбцов.

Всего из матрицы \(\undersetA\) получится выделить \(C_m^kC_n^k\) миноров k-го порядка.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Например, из \(\underset<3\times 4>A\) мы получим 12 миноров 1-го порядка, 18 — 2-го и 4 — 3-го.
Если среди матричных элементов \(a_\) (i = 1, 2 . m; j = 1, 2 . n) есть отличные от нуля, то существует натуральное число r, которое обладает следующими свойствами:

  1. У матрицы А есть ненулевой минор r-го порядка.
  2. Любой из миноров этой матрицы порядка r + 1 или выше будет нулевым.

Число r с такими характеристиками — ранг матрицы A.

Ранг матрицы — это наивысший порядок ее ненулевых миноров.

Устоявшегося обозначения ранга не существует, чаще всего его записывают как \(r (A)\) или rang A, где А — обозначение матрицы. Понятие ранга обычно используют в ситуациях, когда необходима проверка совместимости системы линейных уравнений.

В случае, когда базисный минор матрицы \(\underset<3\times 4>A\) имеет порядок r \(\underset<3\times 4>A\) линейно зависимы. В случае, когда r = m, все строки являются базисными и линейно независимыми.

Из этого можно сделать следующие выводы:

  1. Когда ранг матрицы A меньше числа ее строк, они линейно зависимы. В случае, когда он равен числу строк, все они линейно независимы.
  2. Всякие r + 1 строк матрицы A ранга r линейно зависимы.
  3. Ранг любой матрицы равняется максимальному числу ее линейно независимых строк.

Максимальное число линейно независимых столбцов матрицы равно максимальному количеству ее линейно независимых строк и равно ее рангу.

Ранг не меняется при транспонировании.

Как определить ранг матрицы, примеры

Нахождение ранга матрицы по определению

Определить ранг можно, перебрав все миноры.

Если из элементов матрицы можно составить ненулевой минор n-го порядка, то ранг равен n.

С учетом данной теоремы перебор производится по следующему алгоритму:

  1. Перебрать миноры 1-го порядка. Если наличествует хоть один ненулевой минор 1-го порядка, ранг как минимум равен 1.
  2. Перебрать миноры 2-го порядка. Если все они нулевые, ранг — единичный. В противном случае переходим к пункту 3.
  3. Перебрать миноры 3-го порядка. Если все они нулевые, ранг — два. В противном случае переходим к минорам 4-го, 5-го порядков и т. д.

Нахождение ранга матрицы методом окаймляющих миноров

Этот метод дает возможность сократить вычисления.

Окаймляющий минор — минор (n+1)-го порядка матрицы А. Он окаймляет минор n-го порядка, если матрица, соответствующая минору (n+1)-го порядка, содержит матрицу, которая соответствует упомянутому минору n-го порядка. Таким образом, чтобы получить окаймляемый минор, надо взять окаймляющий его и вычеркнуть одну строку и один столбец.

Вычислить ранг матрицы

В матрице есть элементы, отличные от нуля, значит, ее ранг больше единицы.

Раз ранг больше двух, нужно рассмотреть миноры 3-го порядка, содержащие вышеприведенный минор \(М_2.\)

Как мы видим, все миноры 3-го порядка нулевые, значит, наибольший ненулевой минор относится ко 2-му порядку.

Отыскание ранга матрицы способом элементарных преобразований (методом Гаусса)

В большинстве случаев нахождение ранга перебором миноров требует долгих вычислений. Более простой способ решения этой задачи базируется на элементарных преобразованиях по методу Гаусса, сохраняющих ранг исходной матрицы A и приводящих ее к ступенчатому виду. К таким преобразованиям относятся:

  1. Вычеркивание нулевой строки или столбца. Нулевая строка не может быть базисной строкой, ведь в таком случае базисные строки были бы линейно зависимы, а это противоречит теореме о базисном миноре.
  2. Перестановка двух строк между собой. Другие строки в этом случае не меняются. Это утверждение непосредственно следует из теоремы о базисном миноре, согласно которой ранг равняется максимальному числу линейно независимых строк.
  3. Умножение любой строки на число \( \lambda \neq 0\) .
  4. Вычеркивание строки, которая является линейной комбинацией других строк.
  5. Прибавление к одной строке другой строки, умноженной на число \(\lambda \neq 0\) .
  6. Транспонирование.

Проведем подробный разбор пункта 5. Представим, что к q-й строке прибавлена p-я строка, умноженная на \(\lambda \neq 0\) . В итоге появится новая матрица A′. Если q-я и p-я строки — базисные, это преобразование не изменит значения базисного минора. В случае, когда только p-я строка — базисная, q-я строка является их линейной комбинацией. Умножение на \(\lambda\) это не изменит, и такую строку допустимо удалить при преобразовании.

Если q-я строка — базисная, а p-я — нет, то после преобразования \(r_ \rightarrow r_ + \lambda r_

\) базисный минор \(\triangle_\) перейдет в минор \(\triangle’_\) матрицы A′, который отличается от \(\triangle_\) тем, что вместо элементов строки \(r_\) содержит элементы строки \( r_ + \lambda r_

Читайте также:  Цемент м500 способ приготовления раствора

\) . Согласно т еореме о линейности, \(\triangle’_r=\triangle_r+\lambda\;\triangle_r^<(1)>.\)

Определитель r-го порядка \(\triangle_r^<(1)>\) в этом выражении отличается от \(\triangle_r\) тем, что вместо элементов q-й строки содержит соответствующие элементы строки \( r_

.\)
Так как p-я строка — не базисная, она может быть представлена в виде линейной комбинации r базисных строк, то \(\triangle_r^ <(1)>= 0\) и \(\triangle_r^ <(1)>= \triangle_r.\)
Как мы видим, при преобразовании \( r_ \rightarrow r_ + \lambda r_

\) базисный минор ни при каких условиях не изменяется. Из этого делаем вывод, что r (A) = r (A′).

Матрицы A и B эквивалентны по рангу и обозначаются A ∼ B в том случае, когда B можно получить из A путем элементарных преобразований, перечисленных выше.

Вычислить ранг матрицы

Прибавим первую строку матрицы B, умноженную на -1, к ее третьей строке. После произведения необходимых расчетов получим:

Умножим вторую строку получившейся матрицы на -2 и прибавим результат умножения к третьей строке:

Итак, исходная матрица 3-го порядка является невырожденной, поскольку ее определитель равен

Источник

Ранг матрицы: определение, методы нахождения, примеры, решения.

Ранг матрицы представляет собой важную числовую характеристику. Наиболее характерной задачей, требующей нахождения ранга матрицы, является проверка совместности системы линейных алгебраических уравнений. В этой статье мы дадим понятие ранга матрицы и рассмотрим методы его нахождения. Для лучшего усвоения материала подробно разберем решения нескольких примеров.

Навигация по странице.

Определение ранга матрицы и необходимые дополнительные понятия.

Прежде чем озвучить определение ранга матрицы, следует хорошо разобраться с понятием минора, а нахождение миноров матрицы подразумевает умение вычисления определителя. Так что рекомендуем при необходимости вспомнить теорию статьи методы нахождения определителя матрицы, свойства определителя.

Возьмем матрицу А порядка . Пусть k – некоторое натуральное число, не превосходящее наименьшего из чисел m и n , то есть, .

Минором k-ого порядка матрицы А называется определитель квадратной матрицы порядка , составленной из элементов матрицы А , которые находятся в заранее выбранных k строках и k столбцах, причем расположение элементов матрицы А сохраняется.

Другими словами, если в матрице А вычеркнуть (p–k) строк и (n–k) столбцов, а из оставшихся элементов составить матрицу, сохраняя расположение элементов матрицы А , то определитель полученной матрицы есть минор порядка k матрицы А .

Разберемся с определением минора матрицы на примере.

Рассмотрим матрицу .

Запишем несколько миноров первого порядка этой матрицы. К примеру, если мы выберем третью строку и второй столбец матрицы А , то нашему выбору соответствует минор первого порядка . Иными словами, для получения этого минора мы вычеркнули первую и вторую строки, а также первый, третий и четвертый столбцы из матрицы А , а из оставшегося элемента составили определитель. Если же выбрать первую строку и третий столбец матрицы А , то мы получим минор .

Проиллюстрируем процедуру получения рассмотренных миноров первого порядка
и .

Таким образом, минорами первого порядка матрицы являются сами элементы матрицы.

Покажем несколько миноров второго порядка. Выбираем две строки и два столбца. К примеру, возьмем первую и вторую строки и третий и четвертый столбец. При таком выборе имеем минор второго порядка . Этот минор также можно было составить вычеркиванием из матрицы А третьей строки, первого и второго столбцов.

Другим минором второго порядка матрицы А является .

Проиллюстрируем построение этих миноров второго порядка
и .

Аналогично могут быть найдены миноры третьего порядка матрицы А . Так как в матрице А всего три строки, то выбираем их все. Если к этим строкам выбрать три первых столбца, то получим минор третьего порядка

Он также может быть построен вычеркиванием последнего столбца матрицы А .

Другим минором третьего порядка является

получающийся вычеркиванием третьего столбца матрицы А .

Вот рисунок, показывающий построение этих миноров третьего порядка
и .

Для данной матрицы А миноров порядка выше третьего не существует, так как .

Сколько же существует миноров k-ого порядка матрицы А порядка ?

Число миноров порядка k может быть вычислено как , где и — число сочетаний из p по k и из n по k соответственно.

Как же построить все миноры порядка k матрицы А порядка p на n ?

Нам потребуется множество номеров строк матрицы и множество номеров столбцов . Записываем все сочетания из p элементов по k (они будут соответствовать выбираемым строкам матрицы А при построении минора порядка k ). К каждому сочетанию номеров строк последовательно добавляем все сочетания из n элементов по k номеров столбцов. Эти наборы сочетаний номеров строк и номеров столбцов матрицы А помогут составить все миноры порядка k .

Разберем на примере.

Найдите все миноры второго порядка матрицы .

Так как порядок исходной матрицы равен 3 на 3, то всего миноров второго порядка будет .

Запишем все сочетания из 3 по 2 номеров строк матрицы А : 1, 2 ; 1, 3 и 2, 3 . Все сочетания из 3 по 2 номеров столбцов есть 1, 2 ; 1, 3 и 2, 3 .

Возьмем первую и вторую строки матрицы А . Выбрав к этим строкам первый и второй столбцы, первый и третий столбцы, второй и третий столбцы, получим соответственно миноры

Для первой и третьей строк при аналогичном выборе столбцов имеем

Осталось ко второй и третьей строкам добавить первый и второй, первый и третий, второй и третий столбцы:

Итак, все девять миноров второго порядка матрицы А найдены.

Сейчас можно переходить к определению ранга матрицы.

Ранг матрицы – это наивысший порядок минора матрицы, отличного от нуля.

Ранг матрицы А обозначают как Rank(A) . Можно также встретить обозначения Rg(A) или Rang(A) .

Читайте также:  Реализация товаров способы реализации

Из определений ранга матрицы и минора матрицы можно заключить, что ранг нулевой матрицы равен нулю, а ранг ненулевой матрицы не меньше единицы.

Нахождение ранга матрицы по определению.

Итак, первым методом нахождения ранга матрицы является метод перебора миноров. Этот способ основан на определении ранга матрицы.

Пусть нам требуется найти ранг матрицы А порядка .

Вкратце опишем алгоритм решения этой задачи способом перебора миноров.

Если есть хотя бы один элемент матрицы, отличный от нуля, то ранг матрицы как минимум равен единице (так как есть минор первого порядка, не равный нулю).

Далее перебираем миноры второго порядка. Если все миноры второго порядка равны нулю, то ранг матрицы равен единице. Если существует хотя бы один ненулевой минор второго порядка, то переходим к перебору миноров третьего порядка, а ранг матрицы как минимум равен двум.

Аналогично, если все миноры третьего порядка равны нулю, то ранг матрицы равен двум. Если существует хотя бы один минор третьего порядка, отличный от нуля, то ранг матрицы как минимум равен трем, а мы преступаем к перебору миноров четвертого порядка.

Отметим, что ранг матрицы не может превышать наименьшего из чисел p и n .

Найдите ранг матрицы .

Так как матрица ненулевая, то ее ранг не меньше единицы.

Минор второго порядка отличен от нуля, следовательно, ранг матрицы А не меньше двух. Переходим к перебору миноров третьего порядка. Всего их штук.


Все миноры третьего порядка равны нулю. Поэтому, ранг матрицы равен двум.

Нахождение ранга матрицы методом окаймляющих миноров.

Существуют другие методы нахождения ранга матрицы, которые позволяют получить результат при меньшей вычислительной работе.

Одним из таких методов является метод окаймляющих миноров.

Разберемся с понятием окаймляющего минора.

Говорят, что минор Мок (k+1)-ого порядка матрицы А окаймляет минор M порядка k матрицы А , если матрица, соответствующая минору Мок , «содержит» матрицу, соответствующую минору M .

Другими словами, матрица, соответствующая окаймляемому минору М , получается из матрицы, соответствующей окаймляющему минору Mок , вычеркиванием элементов одной строки и одного столбца.

Для примера рассмотрим матрицу и возьмем минор второго порядка . Запишем все окаймляющие миноры:

Метод окаймляющих миноров обосновывается следующей теоремой (приведем ее формулировку без доказательства).

Если все миноры, окаймляющие минор k-ого порядка матрицы А порядка p на n , равны нулю, то все миноры порядка (k+1) матрицы А равны нулю.

Таким образом, для нахождения ранга матрицы не обязательно перебирать все миноры, достаточно окаймляющих. Количество миноров, окаймляющих минор k -ого порядка матрицы А порядка , находится по формуле . Отметим, что миноров, окаймляющих минор k-ого порядка матрицы А , не больше, чем миноров (k + 1)-ого порядка матрицы А . Поэтому, в большинстве случаев использование метода окаймляющих миноров выгоднее простого перебора всех миноров.

Перейдем к нахождению ранга матрицы методом окаймляющих миноров. Кратко опишем алгоритм этого метода.

Если матрица А ненулевая, то в качестве минора первого порядка берем любой элемент матрицы А , отличный от нуля. Рассматриваем его окаймляющие миноры. Если все они равны нулю, то ранг матрицы равен единице. Если же есть хотя бы один ненулевой окаймляющий минор (его порядок равен двум), то переходим к рассмотрению его окаймляющих миноров. Если все они равны нулю, то Rank(A) = 2 . Если хотя бы один окаймляющий минор отличен от нуля (его порядок равен трем), то рассматриваем его окаймляющие миноры. И так далее. В итоге Rank(A) = k , если все окаймляющие миноры (k + 1)-ого порядка матрицы А равны нулю, либо Rank(A) = min(p, n) , если существует ненулевой минор, окаймляющий минор порядка (min(p, n) – 1) .

Разберем метод окаймляющих миноров для нахождения ранга матрицы на примере.

Найдите ранг матрицы методом окаймляющих миноров.

Так как элемент a1 1 матрицы А отличен от нуля, то возьмем его в качестве минора первого порядка. Начнем поиск окаймляющего минора, отличного от нуля:

Найден окаймляющий минор второго порядка, отличный от нуля . Переберем его окаймляющие миноры (их штук):

Все миноры, окаймляющие минор второго порядка , равны нулю, следовательно, ранг матрицы А равен двум.

Найдите ранг матрицы с помощью окаймляющих миноров.

В качестве отличного от нуля минора первого порядка возьмем элемент a1 1 = 1 матрицы А . Окаймляющий его минор второго порядка не равен нулю. Этот минор окаймляется минором третьего порядка . Так как он не равен нулю и для него не существует ни одного окаймляющего минора, то ранг матрицы А равен трем.

Нахождение ранга с помощью элементарных преобразований матрицы (методом Гаусса).

Рассмотрим еще один способ нахождения ранга матрицы.

Следующие преобразования матрицы называют элементарными:

  • перестановка местами строк (или столбцов) матрицы;
  • умножение всех элементов какой-либо строки (столбца) матрицы на произвольное число k , отличное от нуля;
  • прибавление к элементам какой-либо строки (столбца) соответствующих элементов другой строки (столбца) матрицы, умноженных на произвольное число k .

Матрица В называется эквивалентной матрице А , если В получена из А с помощью конечного числа элементарных преобразований. Эквивалентность матриц обозначается символом «

» , то есть, записывается A

Нахождение ранга матрицы с помощью элементарных преобразований матрицы основано на утверждении: если матрица В получена из матрицы А с помощью конечного числа элементарных преобразований, то Rank(A) = Rank(B) .

Справедливость этого утверждения следует из свойств определителя матрицы:

  • При перестановке строк (или столбцов) матрицы ее определитель меняет знак. Если он равен нулю, то при перестановке строк (столбцов) он остается равным нулю.
  • При умножении всех элементов какой-либо строки (столбца) матрицы на произвольное число k отличное от нуля, определитель полученной матрицы равен определителю исходной матрицы, умноженному на k . Если определитель исходной матрицы равен нулю, то после умножения всех элементов какой-либо строки или столбца на число k определитель полученной матрицы также будет равен нулю.
  • Прибавление к элементам некоторой строки (столбца) матрицы соответствующих элементов другой строки (столбца) матрицы, умноженных на некоторое число k , не изменяет ее определителя.
Читайте также:  Паст континиус способы употребления

Суть метода элементарных преобразований заключается в приведении матрицы, ранг которой нам требуется найти, к трапециевидной (в частном случае к верхней треугольной) с помощью элементарных преобразований.

Для чего это делается? Ранг матриц такого вида очень легко найти. Он равен количеству строк, содержащих хотя бы один ненулевой элемент. А так как ранг матрицы при проведении элементарных преобразований не изменяется, то полученное значение будет рангом исходной матрицы.

Приведем иллюстрации матриц, одна из которых должна получиться после преобразований. Их вид зависит от порядка матрицы.

  • Для прямоугольных матриц А порядка p на n , число строк которых больше числа столбцов (p > n) .

    или
  • Для прямоугольных матриц А порядка p на n , число строк которых меньше числа столбцов (p .

    или
  • Для квадратных матриц А порядка n на n .

    или

Эти иллюстрации являются шаблонами, к которым будем преобразовывать матрицу А .

Опишем алгоритм метода.

Пусть нам требуется найти ранг ненулевой матрицы А порядка ( p может быть равно n ).

Будем считать, что элемент a11 отличен от нуля. В противном случае мы можем перестановкой строк и (или) столбцов преобразовать матрицу так, чтобы «новый» элемент a11 стал ненулевым.

Итак, . Умножим все элементы первой строки матрицы А на . При этом получим эквивалентную матрицу, обозначим ее А (1) :

К элементам второй строки полученной матрицы А (1) прибавим соответствующие элементы первой строки, умноженные на . К элементам третьей строки прибавим соответствующие элементы первой строки, умноженные на . И так далее до p-ой строки. Получим эквивалентную матрицу, обозначим ее А (2) :

Если все элементы полученной матрицы, находящиеся в строках со второй по p-ую , равны нулю, то ранг этой матрицы равен единице, а, следовательно, и ранг исходной матрицы равен единице.

Если же в строках со второй по p-ую есть хотя бы один ненулевой элемент, то продолжаем проводить преобразования. Причем действуем абсолютно аналогично, но лишь с отмеченной на рисунке частью матрицы А (2)

Если , то переставляем строки и (или) столбцы матрицы А (2) так, чтобы «новый» элемент стал ненулевым.

Итак, . Умножаем каждый элемент второй строки матрицы А (2) на . Получаем эквивалентную матрицу А (3) :

К элементам третьей строки полученной матрицы А (3) прибавим соответствующие элементы второй строки, умноженные на . К элементам четвертой строки прибавим соответствующие элементы второй строки, умноженные на . И так далее до p-ой строки. Получим эквивалентную матрицу, обозначим ее А (4) :

Если все элементы полученной матрицы, находящиеся в строках с третьей по p-ую , равны нулю, то ранг этой матрицы равен двум, а, следовательно, Rank(A) = 2 .

Если же в строках с третьей по p-ую есть хотя бы один ненулевой элемент, то продолжаем проводить преобразования. Причем действуем абсолютно аналогично, но лишь с отмеченной на рисунке частью матрицы А (4) :

И так действуем дальше, пока не придем к одному из рассмотренных выше шаблонов, что позволит определить ранг исходной матрицы.

Разберем решения нескольких примеров.

Найдите ранг матрицы с помощью элементарных преобразований.

Так как элемент a1 1 отличен от нуля, то умножим элементы первой строки матрицы А на :

Прибавим к элементам второй строки соответствующие элементы первой строки, умноженные на (- 3) . К элементам третьей строки прибавим элементы первой строки, умноженные на (- 1) . И так далее:

Элемент отличен от нуля, поэтому мы можем умножить элементы второй строки матрицы А (2) на :

К элементам третьей строки полученной матрицы прибавляем соответствующие элементы второй строки, умноженные на ; к элементам четвертой строки – элементы второй строки, умноженные на ; к элементам пятой строки – элементы второй строки, умноженные на :

Все элементы третьей, четвертой и пятой строк полученной матрицы равны нулю. Так с помощью элементарных преобразований мы привели матрицу А к трапецеидальному виду, откуда видно, что Rank(A (4) ) = 2 . Следовательно, ранг исходной матрицы также равен двум.

ОБРАТИТЕ ВНИМАНИЕ: при проведении элементарных преобразований не допускаются приближенные вычисления!

Рассмотрим еще один пример.

Методом элементарных преобразований найдите ранг матрицы .

Поменяем местами первую и вторую строки матрицы А , так как элемент a1 1 равен нулю, а элемент a21 отличен от нуля:

В полученной матрице элемент равен единице, поэтому не нужно производить умножение элементов первой строки на . Сделаем все элементы первого столбца, кроме первого, нулевыми:

Так первый столбец преобразован к нужному виду.

Элемент в полученной матрице отличен от нуля. Умножим элементы второй строки на :

Второй столбец полученной матрицы имеет нужный вид, так как элемент уже равен нулю.

Так как , а , то поменяем местами третий и четвертый столбцы:

Умножим третью строку полученной матрицы на :

На этом заканчиваем преобразования. Получаем Rank(A (5) )=3 , следовательно, Rank(A)=3 .

ранг исходной матрицы равен трем.

Мы разобрали понятие ранга матрицы и рассмотрели три способа его нахождения:

  • по определению методом перебора всех миноров;
  • методом окаймляющих миноров;
  • методом элементарных преобразований.

Целесообразно всегда использовать метод элементарных преобразований при нахождении ранга матрицы, так как он приводит к результату при меньшем объеме вычислений, по сравнению с методом окаймляющих миноров, и тем более в сравнении с методом перебора всех миноров матрицы.

Источник

Оцените статью
Разные способы