Способы нахождения радиуса вписанной окружности треугольника

Содержание
  1. Радиус вписанной в треугольник окружности онлайн
  2. 1. Радиус вписанной в треугольник окружности, если известна площадь и полупериметр треуольника
  3. 2. Радиус вписанной в треугольник окружности, если известны все три стороны треугольника
  4. 3. Радиус вписанной в треугольник окружности, если известны две стороны и угол между ними
  5. 4. Радиус вписанной в треугольник окружности, если известны сторона и прилежащие два угла
  6. Все формулы для радиуса вписанной окружности
  7. Радиус вписанной окружности в треугольник
  8. Радиус вписанной окружности в равносторонний треугольник
  9. Радиус вписанной окружности равнобедренный треугольник
  10. Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
  11. Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
  12. Формулы для радиуса окружности, вписанной в треугольник
  13. Вывод формул для радиуса окружности, вписанной в треугольник

Радиус вписанной в треугольник окружности онлайн

С помощю этого онлайн калькулятора можно найти радиус вписанной в треугольник окружности. Для нахождения радиуса вписанной в треугольник окружности введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть и численные примеры смотрите ниже.

Открыть онлайн калькулятор

1. Радиус вписанной в треугольник окружности, если известна площадь и полупериметр треуольника

Пусть известна площадь S треугольника и полупериметр

где a, b, c стороны треугольника (Рис.1).

Найдем радиус вписанной в треугольник окружности r.

Из центра O вписанной в треугольник окружности проведем перпендикуляры к сторонам треугольника. Все эти перпендикуляры равны радиусу r вписанной в треугольник окружности (Рис.2).

Прямыми OA, OB, OC разделим треугольник ABC на три треугольника: AOC, COB, AOB. Найдем площадь треугольников AOC, COB, AOB:

\( \small S_=\frac<\large 1> <\large 2>\cdot r \cdot b ,\) \( \small S_=\frac<\large 1> <\large 2>\cdot r \cdot c, \) \( \small S_=\frac<\large 1> <\large 2>\cdot r \cdot a \) (2)
\( \small S=S_+S_+S_\)\( \small =\frac<\large 1> <\large 2>\cdot r \cdot b \) \( \small +\frac<\large 1> <\large 2>\cdot r \cdot c \) \( \small +\frac<\large 1> <\large 2>\cdot r \cdot a \) \( \small =\frac<\large 1> <\large 2>\cdot r \cdot ( a+b+c) \) (3)

Найдем радиус r вписанной в треугольник окружности из равенства (4):

Пример 1. Известны площадь \( \small S=17 \) и полупериметр \( \small p=10 \) треугольника. Найти радиус вписанной в треугольник окружности.

Решение. Для нахождения радиуса вписанной в треугольник окружности воспользуемся формулой (5).

Подставим значения \( \small S=17 \) и \( \small p=10 \) в (5):

Ответ:

2. Радиус вписанной в треугольник окружности, если известны все три стороны треугольника

Пусть известны три стороны треугольника: a, b, c. Найдем радиус вписанной в треугольник окружности (Рис.3).

Площадь треугольника по трем сторонам вычисляется из формулы:

(6)

где полупериметр p вычисляется из формулы (1).

Подставляя (6) в (5), получим формулу радиуса вписанной в треугольник окружности:

Пример 2. Известны стороны треугольника: \( \small a=15 ,\; b=7, \; c=9.\) Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанный в треугольник найдем сначала полупериметр треугольника из формулы (1):

Подставим значения \( \small a,\; b, \; c, \; p \) в (7):

Ответ:

3. Радиус вписанной в треугольник окружности, если известны две стороны и угол между ними

Пусть известны стороны b и c треугольника и угол A между ними (Рис.4). Найдем формулу радиуса вписанной в треугольник окружности.

Из теоремы косинусов найдем сторону a треугольника:

(8)

Далее, для вычисления радиуса вписанной в треугольник окружности, воспользуемся формулой (7), где полупериметр p вычисляется из (1).

Пример 3. Известны стороны треугольника: \( \small b=9 ,\; c=7, \; \) и угол меджу ними A=30°. Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанный в треугольник найдем сначала сторону a треугольника из формулы (8):

Далее найдем p из формулы (1):

Подставим значения \( \small a,\; b, \; c, \; p \) в (7):

Ответ:

4. Радиус вписанной в треугольник окружности, если известны сторона и прилежащие два угла

Пусть известны сторона a треугольника и прилежащие два угла B и C (Рис.5). Найдем радиус вписанной в треугольник окружности.

(9)

Поскольку сумма углов треугольника равна 180°, то имеем \( \small \angle A=180°-(\angle B+\angle C). \) Из формул приведения тригонометрических функций имеем: \( \small \sin A=\sin (180°-( B+ C)) \) \( \small =\sin (B+C). \) Тогда формулы (9) можно переписать так:

(10)

Получая значения сторон b, c из (10) и значение p из (1), можно найди радиус вписанной в треугольник окружности из формулы (7). Таким образом, для нахождения радиуса вписанной в треугольник окружности через сторону и прилежащим двум углам применяется формула

(11)
(12)
, (13)
. (14)

Пример 4. Сторона треугольника равена: \( \small a=7 ,\) а прилежащие два угла равны соответственно \( \small \angle B=25°, \) \( \small \angle C=40°, \) Найти радиус окружности вписанной в треугольник.

Решение. Для нахождения радиуса окружности вписанной в треугольник воспользуемся формулой (11). Найдем, сначала, стороны b и c из формул (12),(13). Подставим значения \( \small a=7 ,\) \( \small \angle B=25°, \) \( \small \angle C=40°, \) в (12) и (13):

.

Далее найдем полупериметр p из формулы (14):

.

Подставляя значения a, b, c, p в (11), получим:

Ответ:

Источник

Все формулы для радиуса вписанной окружности

Радиус вписанной окружности в треугольник

a , b , c — стороны треугольника

p — полупериметр, p=( a + b + c )/2

Формула радиуса вписанной окружности в треугольник ( r ):

Радиус вписанной окружности в равносторонний треугольник

a — сторона треугольника

r — радиус вписанной окружности

Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):

Радиус вписанной окружности равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

α — угол при основании

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :

2. Формулы радиуса вписанной окружности если известны: сторона и высота

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

h — высота

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :

Источник

Окружность, вписанная в треугольник. Основное свойство биссектрисы угла

Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла
Формулы для радиуса окружности, вписанной в треугольник
Вывод формул для радиуса окружности, вписанной в треугольник

Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла

Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.

Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).

Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.

Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).

Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно

что и требовалось доказать.

Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.

Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.

Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.

Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).

Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать

Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .

Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.

Формулы для радиуса окружности, вписанной в треугольник

Формулы, позволяющие найти радиус вписанной в треугольник окружности , удобно представить в виде следующей таблицы.

a, b, c – стороны треугольника,
S – площадь,
r – радиус вписанной окружности,
p – полупериметр

.

a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Фигура Рисунок Формула Обозначения
Произвольный треугольник
Равнобедренный треугольник
Равносторонний треугольник
Прямоугольный треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Произвольный треугольник
Равнобедренный треугольник
Равносторонний треугольник
Прямоугольный треугольник
Произвольный треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.

Равнобедренный треугольник

Равносторонний треугольник

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Прямоугольный треугольник

Вывод формул для радиуса окружности, вписанной в треугольник

Теорема 5 . Для произвольного треугольника справедливо равенство

где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).

с помощью формулы Герона получаем:

что и требовалось.

Теорема 6 . Для равнобедренного треугольника справедливо равенство

где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).

то, в случае равнобедренного треугольника, когда

что и требовалось.

Теорема 7 . Для равностороннего треугольника справедливо равенство

где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).

то, в случае равностороннего треугольника, когда

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

Теорема 8 . Для прямоугольного треугольника справедливо равенство

Доказательство . Рассмотрим рисунок 9.

Поскольку четырёхугольник CDOF является прямоугольником прямоугольником , у которого соседние стороны DO и OF равны, то этот прямоугольник – квадрат квадрат . Следовательно,

В силу теоремы 3 справедливы равенства

Следовательно, принимая также во внимание теорему Пифагора, получаем

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.

Источник

Читайте также:  Как засолить огурцы горячим способом без уксуса
Оцените статью
Разные способы