Способы нахождения периметра трапеции

Содержание
  1. Как найти периметр трапеции
  2. Основные свойства трапеции
  3. Способы нахождений периметра
  4. По всем сторонам
  5. По сторонам равнобедренной трапеции
  6. Через среднюю линию
  7. Примеры решения задач
  8. Нахождение периметра трапеции: формула и задачи
  9. Формула вычисления периметра
  10. Примеры задач
  11. Как найти периметр трапеции: равнобедренной, разносторонней, прямоугольной
  12. Принятые в формулах обозначения
  13. Найти периметр трапеции
  14. Основные свойства равнобедренной трапеции
  15. Формулы длин сторон равнобедренной трапеции:
  16. Формулы длины средней линии равнобедренной трапеции:
  17. Формулы определения длины высоты равнобедренной трапеции:
  18. В исходных данных: все стороны
  19. Периметр произвольной трапеции
  20. Вписанная окружность
  21. Решение задач о прямоугольной трапеции
  22. Задача Даны три стороны, одна из которых перпендикулярная боковая.
  23. Задача Даны оба основания и угол при основании
  24. Свойства и признаки равнобедренной трапеции
  25. Формула определения радиуса вписанной в трапецию окружности
  26. Формулы определения длин отрезков проходящих через трапецию:
  27. Определение периметра прямоугольной трапеции
  28. Известны: диагонали и углы между ними

Как найти периметр трапеции

​Трапеция — это четырехугольник, у которого лишь одна пара противолежащих сторон параллельна.

Периметр трапеции — это сумма длин всех его сторон.

Основные свойства трапеции

  • средняя линия трапеции параллельна ее основаниям, а также равна половине их суммы;

  • биссектриса любого угла данного четырехугольника отсекает на его основании отрезок, равный боковой стороне;

  • треугольники ABO и DCO (на картинке), образованные диагоналями фигуры и ее основаниями, подобны;

  • треугольники OAB и OCD, образованные диагоналями трапеции и ее боковыми сторонами, имеют одинаковую площадь;

  • если сумма длин оснований четырехугольника равна сумме его боковых ребер, то в фигуру можно вписать окружность;

  • точки M и N середины диагоналей лежат на одной прямой со средней линией фигуры. Также отрезок MN равен полуразность оснований четырехугольника;

  • середины оснований фигуры, точка пересечения ее диагоналей, а также точка пересечения продолжений ее боковых сторон лежат на одной прямой;

Свойства равнобедренной трапеции

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

  • в равнобедренной трапеции углы при обоих ее основаниях одинаковы;
  • диагонали равны;
  • равнобедренную трапецию всегда можно вписать в окружность или описать окружность вокруг;
  • если диагонали перпендикулярны, то высота фигуры равна полусумме ее оснований.

Способы нахождений периметра

Рассмотрим способы, с помощью которых можно найти сумму длин всех сторон данного четырехугольника.

По всем сторонам

Формула для нахождения периметра выглядит так:

где a, b, c, d — стороны трапеции.

По сторонам равнобедренной трапеции

Если нам известны ребра этого четырехугольника с одинаковыми боковыми сторонами, то находить ее P можно по следующей формуле:

Через среднюю линию

Так как средняя линия трапеции равна полусумме ее оснований, то формулу P можно выразить так:

где l — средняя линия фигуры.

Примеры решения задач

Давайте рассмотрим наглядные примеры решения задач на нахождение суммы длин всех ребер этой фигуры.

Читайте также:  Кандид раствор для полости рта инструкция для детей при стоматите способ применения

Задача 1

Дана трапеция с боковыми сторонами 4 см и 5 см, а ее основания равны 7 см и 10 см. Найти периметр данного многоугольника.

Решение:

Нам пригодится самая первая формула для расчета:

Подставляем значения и получаем:

Задача 2

Известно, что у трапеции две боковые стороны равны 7 см, а ее основания равны 5 см и 8 см. Нужно найти P четырехугольника.

Решение:

Так как трапеция равнобедренная, удобнее всего будет использовать формулу:

Таким образом, получается:

\(P=2\times 7+5+8=27\) см.

Задача 3

Средняя линия l трапеции равна 6 см, а боковые стороны 5 см и 9 см. Вычислить P фигуры.

Источник

Нахождение периметра трапеции: формула и задачи

В данной публикации мы рассмотрим, каким образом можно посчитать периметр трапеции и разберем примеры решения задач.

Формула вычисления периметра

Периметр (P) трапеции равняется сумме длин всех ее сторон.

P = a + b + c + d

  • b и d – основания трапеции;
  • a и с – ее боковые стороны.

Периметр равнобедренной трапеции

В равнобедренной трапеции боковые стороны равны (a=c), из-за чего ее, также, называют равнобокой. Периметр считается так:

P = 2a + b + d или P = 2с + b + d

Периметр прямоугольной трапеции

Для расчета периметра используется такая же формула, что и для разносторонней трапеции.

P = a + b + c + d

Примеры задач

Задание 1
Найдите периметр трапеции, если ее основания равны 7 и 10 см, а боковые стороны – 4 и 5 см.

Решение:
Используем стандартную формулу, подставив в нее известные нам длины сторон: P = 7 см + 10 см + 4 см + 5 см = 26 см.

Задание 2
Периметр равнобедренной трапеции равняется 22 см. Найдите длину боковой стороны, если основания фигуры равны 3 см и 9 см.

Решение:
Как мы знаем, периметр равнобедренной трапеции вычисляется по формуле: P = 2a + b + d, где а – боковая сторона.
Ее длина, умноженная на два равна: 2a = P – b – d = 22 см – 3 см – 9 см = 10 см.
Следовательно, длина боковой стороны составляет: a = 10 см / 2 = 5 см.

Источник

Как найти периметр трапеции: равнобедренной, разносторонней, прямоугольной

Принятые в формулах обозначения

Во всех приведенных ниже математических записях верны такие прочтения букв.

произвольная трапеция равнобедренная трапеция название
а а нижнее основание
в в верхнее основание
с, d с боковые стороны
н н высота
m m средняя линия
d1, d2 d1 диагонали
s s площадь
α, β α углы при нижнем основании
γ, δ γ, δ углы на пересечении диагоналей

Найти периметр трапеции

Введите данные:

a =
b =
c =
d =

Вводить можно числа или дроби (-2.4, 5/7, …).

Основные свойства равнобедренной трапеции

∠ABC + ∠BAD = 180° и ∠ADC + ∠BCD = 180°

AC 2 + BD 2 = AB 2 + CD 2 + 2BC · AD

9. Высота (CP), опущенная из вершины (C) на большее основание (AD), делит его на большой отрезок (AP), который равен полусумме оснований и меньший (PD) – равен полуразности оснований:

AP = BC + AD
2
PD = AD – BC
2

Формулы длин сторон равнобедренной трапеции:

a = b + 2 h ctg α = b + 2 c cos α

b = a – 2 h ctg α = a – 2 c cos α

c = h = a – b
sin α 2 cos α

2. Формула длины сторон трапеции через диагонали и другие стороны:

Читайте также:  Путь исследования способ достижения цели совокупность приемов
a = d 1 2 – c 2 b = d 1 2 – c 2 c = √ d 1 2 – ab
b a

3. Формулы длины основ через площадь, высоту и другую основу:

a = 2S – b b = 2S – a
h h

4. Формулы длины боковой стороны через площадь, среднюю линию и угол при основе:

с = S
m sin α

5. Формулы длины боковой стороны через площадь, основания и угол при основе:

с = 2S
( a + b ) sin α

Формулы длины средней линии равнобедренной трапеции:

m = a – h ctg α = b + h ctg α = a – √ c 2 – h 2 = b + √ c 2 – h 2

2. Формула средней линии трапеции через площадь и сторону:

m = S
c sin α

Формулы определения длины высоты равнобедренной трапеции:

1. Формула высоты через стороны:

h = 1 √ 4 c 2 – ( a – b ) 2
2

2. Формула высоты через стороны и угол прилегающий к основе:

h = a – b tg β = c sin β
2

В исходных данных: все стороны

Для того чтобы найти высоту трапеции в общем случае потребуется воспользоваться такой формулой:

н = √(с 2 – (((а – в) 2 + с 2 – d 2 )/(2(а – в))) 2 ). Номер 1.

Не самая короткая, но и встречается в задачах достаточно редко. Обычно можно воспользоваться другими данными.

Формула, которая подскажет, как найти высоту равнобедренной трапеции в той же ситуации, гораздо короче:

н = √(с 2 – (а – в) 2 /4). Номер 2.

Периметр произвольной трапеции

Периметр произвольной трапеции, в которой AB=a , BC=b , CD=c , AD=d , имеет вид:

[ LARGE P_ = a + b + c + d ]

где:
P – периметр трапеции
a, b, c, d – стороны трапеции

Вписанная окружность

Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и она делит боковую сторону точкой касания на два отрезка — и , то , то

Решение задач о прямоугольной трапеции

Прямоугольной называют трапецию, у которой углы при одной из боковых сторон равны 90 0 . Рассмотрим пример, как найти боковую сторону трапеции, если известны три другие стороны.

Задача Даны три стороны, одна из которых перпендикулярная боковая.

Допустим, нам дана прямоугольная трапеция АВСД, у которой АВ перпендикулярно ВС. Известно, что АВ = 12 см, ВС = 1 см, АД = 6 см. Необходимо найти большую боковую сторону.

Из точки С опускаем проводим высоту СК и получаем прямоугольный треугольник СДК и прямоугольник АВСК. Поскольку у прямоугольника противоположные стороны равны СК = АВ = 12 см, а АК = ВС = 1 см.

Находим отрезок КД:

  • КД = АД – АК = 6 – 1 = 5 (см)

Согласно теореме Пифагора:

  • СД 2 =СК 2 +КД 2 =12 2 +5 2 =144+25=169
  • СД = √169 = 13 (см)

Ответ: СД = 13 см

Задача Даны оба основания и угол при основании

Дана трапеция АВСД, у которой основания ВС и АД равны 6 и 10 см соответственно, угол ВАД – прямой, а СДА равен 45 градусов. Найдите меньшую боковую сторону.

  1. Проводим высоту СК и получаем прямоугольный треугольник СКД и прямоугольник АВСК. Поскольку у прямоугольника противоположные стороны равны АК = ВС = 6 см.
  2. КД = АД – АК = 10 – 6 = 4 см
  3. cos 45 = √2/2 = КД / СД, отсюда СД = КД / cos 45
  4. Получаем СД = 4/√2/2 = 4√2 (см)
Читайте также:  Изобразительный или объемный способ индивидуализации товаров производимых организацией

Ответ: СД = 4√2 см

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

r = h
2

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL = b KN = ML = a TO = OQ = a · b
2 2 a + b

Определение периметра прямоугольной трапеции

Периметр прямоугольной трапеции определяется по той же формуле, что и периметр равнобедренной, однако в этом случае формула имеет вид:

Периметр ABCD = АВ+ВС+СD+AD. Рассмотрим пример определения периметра прямоугольной трапеции. В данном примере сторона АВ = 5 см, ВС = 7см, AD = 10 см, длина стороны СD неизвестна.

  • опустим высоту из вершины С, высота CH = AB = 5см;
  • исходя из рисунка 3, AH = BC = 7 см;
  • HD = AD – AH = 10 – 7 = 3 см;
  • далее для нахождения периметра, необходимо определить длину стороны СD, являющейся в равнобедренном треугольнике СHD гипотенузой. Согласно теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, таким образом, длина стороны СD = 5,83 см: CD = = 5,83 см;
  • подставляя полученные значения в формулу, получим периметр равный 27,83 см: Периметр ABCD = 5+7+5,83+10 = 27,83 см.

Итак, определить длину одной из сторон трапеции можно воспользовавшись теоремой Пифагора. Так же, для определения длины различных сторон трапеции могут помочь следующие формулы:

  • формула расчета длины основания через среднюю линию;
  • формулы длин сторон через высоту и угол при нижнем основании трапеции;
  • формулы длин сторон трапеции через диагонали, высоту и угол между диагоналями;
  • формулы длин сторон равнобедренной трапеции через площадь.

Как видно, для решения задач, связанных с расчетом длины сторон трапеции, существует более чем широкий спектр математических приемов, выбор которых обусловлен конкретной ситуацией.

Известны: диагонали и углы между ними

Обычно к этим данным присоединяются еще известные величины. Например, основания или средняя линия. Если даны основания, то для ответа на вопрос, как найти высоту трапеции, пригодится такая формула:

Это для общего вида фигуры. Если дана равнобедренная, то запись преобразится так:

н = (d1 2 * sin γ) / (а + в) или н = (d1 2 * sin δ) / (а + в). Номер 6.

Когда в задаче идет речь о средней линии трапеции, то формулы для поиска ее высоты становятся такими:

н = (d1 2 * sin γ) / 2m или н = (d1 2 * sin δ) / 2m. Номер 6а.

Источник

Оцените статью
Разные способы