- Приведение дробей к общему знаменателю
- Умножение «крест-накрест»
- Метод общих делителей
- Метод наименьшего общего кратного
- Приведение дроби к наименьшему общему знаменателю: правило, примеры решений
- Что такое приведение дроби к общему знаменателю?
- Общий знаменатель: определение, примеры
- Наименьший общий знаменатель
- Как привести дроби к наименьшему общему знаменателю
- Приведение нескольких дробей к наименьшему общему знаменателю
- Математика. 5 класс
Приведение дробей к общему знаменателю
Изначально я хотел включить методы приведения к общему знаменателю в параграф «Сложение и вычитание дробей». Но информации оказалось так много, а важность ее столь велика (ведь общие знаменатели бывают не только у числовых дробей), что лучше изучить этот вопрос отдельно.
Итак, пусть у нас есть две дроби с разными знаменателями. А мы хотим сделать так, чтобы знаменатели стали одинаковыми. На помощь приходит основное свойство дроби, которое, напомню, звучит следующим образом:
Дробь не изменится, если ее числитель и знаменатель умножить на одно и то же число, отличное от нуля.
Таким образом, если правильно подобрать множители, знаменатели у дробей сравняются — этот процесс называется . А искомые числа, «выравнивающие» знаменатели, называются .
Для чего вообще надо приводить дроби к общему знаменателю? Вот лишь несколько причин:
- Сложение и вычитание дробей с разными знаменателями. По-другому эту операцию никак не выполнить;
- Сравнение дробей. Иногда приведение к общему знаменателю значительно упрощает эту задачу;
- Решение задач на доли и проценты. Процентные соотношения являются, по сути, обыкновенными выражениями, которые содержат дроби.
Есть много способов найти числа, при умножении на которые знаменатели дробей станут равными. Мы рассмотрим лишь три из них — в порядке возрастания сложности и, в некотором смысле, эффективности.
Умножение «крест-накрест»
Самый простой и надежный способ, который гарантированно выравнивает знаменатели. Будем действовать «напролом»: умножаем первую дробь на знаменатель второй дроби, а вторую — на знаменатель первой. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей. Взгляните:
Задача. Найдите значения выражений:
В качестве дополнительных множителей рассмотрим знаменатели соседних дробей. Получим:
Да, вот так все просто. Если вы только начинаете изучать дроби, лучше работайте именно этим методом — так вы застрахуете себя от множества ошибок и гарантированно получите результат.
Единственный недостаток данного метода — приходится много считать, ведь знаменатели умножаются «напролом», и в результате могут получиться очень большие числа. Такова расплата за надежность.
Метод общих делителей
Этот прием помогает намного сократить вычисления, но, к сожалению, применяется он достаточно редко. Метод заключается в следующем:
- Прежде, чем действовать «напролом» (т.е. методом «крест-накрест»), взгляните на знаменатели. Возможно, один из них (тот, который больше), делится на другой.
- Число, полученное в результате такого деления, будет дополнительным множителем для дроби с меньшим знаменателем.
- При этом дробь с большим знаменателем вообще не надо ни на что умножать — в этом и заключается экономия. Заодно резко снижается вероятность ошибки.
Задача. Найдите значения выражений:
Заметим, что . Поскольку в обоих случаях один знаменатель делится без остатка на другой, применяем метод общих множителей. Имеем:
Заметим, что вторая дробь вообще нигде ни на что не умножалась. Фактически, мы сократили объем вычислений в два раза!
Кстати, дроби в этом примере я взял не случайно. Если интересно, попробуйте сосчитать их методом «крест-накрест». После сокращения ответы получатся такими же, но работы будет намного больше.
В этом и состоит сила метода общих делителей, но, повторюсь, применять его можно лишь в том случае, когда один из знаменателей делится на другой без остатка. Что бывает достаточно редко.
Метод наименьшего общего кратного
Когда мы приводим дроби к общему знаменателю, мы по сути пытаемся найти такое число, которое делится на каждый из знаменателей. Затем приводим к этому числу знаменатели обеих дробей.
Таких чисел очень много, и наименьшее из них совсем не обязательно будет равняться прямому произведению знаменателей исходных дробей, как это предполагается в методе «крест-накрест».
Например, для знаменателей 8 и 12 вполне подойдет число 24, поскольку . Это число намного меньше произведения .
Наименьшее число, которое делится на каждый из знаменателей, называется их (НОК).
Обозначение: наименьшее общее кратное чисел обозначается . Например, ; .
Если вам удастся найти такое число, итоговый объем вычислений будет минимальным. Посмотрите на примеры:
Задача. Найдите значения выражений:
Заметим, что . Множители 2 и 3 взаимно просты (не имеют общих делителей, кроме 1), а множитель 117 — общий.
Аналогично, . Множители 3 и 4 взаимно просты, а множитель 5 — общий.
Теперь приведем дроби к общим знаменателям:
Обратите внимание, насколько полезным оказалось разложение исходных знаменателей на множители:
- Обнаружив одинаковые множители, мы сразу вышли на наименьшее общее кратное, что, вообще говоря, является нетривиальной задачей;
- Из полученного разложения можно узнать, каких множителей «не хватает» каждой из дробей. Например, , следовательно, для первой дроби дополнительный множитель равен 3.
Чтобы оценить, насколько колоссальный выигрыш дает метод наименьшего общего кратного, попробуйте вычислить эти же примеры методом «крест-накрест». Разумеется, без калькулятора. Думаю, после этого комментарии будут излишними.
Не думайте, что таких сложных дробей в настоящих примерах не будет. Они встречаются постоянно, и приведенные выше задачи — не предел!
Единственная проблема — как найти этот самый НОК. Иногда все находится за несколько секунд, буквально «на глаз», но в целом это сложная вычислительная задача, требующая отдельного рассмотрения. Здесь мы не будем этого касаться.
Источник
Приведение дроби к наименьшему общему знаменателю: правило, примеры решений
В данной статье рассказывается, как привести дроби к общему знаменателю и как найти наименьший общий знаменатель. Приведены определения, дано правило приведения дробей к общему знаменателю и рассмотрены практические примеры.
Что такое приведение дроби к общему знаменателю?
Обыкновенные дроби состоят из числителя — верхней части, и знаменателя — нижней части. Если дроби имеют одинаковый знаменатель, говорят, что они приведены к общему знаменателю. Например, дроби 11 14 , 17 14 , 9 14 имеют одинаковый знаменатель 14 . Другими словами, они приведены к общему знаменателю.
Если же дроби имеют разные знаменатели, то их всегда можно привести к общему знаменателю при помощи нехитрых действий. Чтобы сделать это, нужно числитель и знаменатель умножить на определенные дополнительные множители.
Очевидно, что дроби 4 5 и 3 4 не приведены к общему знаменателю. Чтобы это сделать, нужно с использованием дополнительных множителей 5 и 4 привести их к знаменателю 20. Как именно сделать это? Умножим числитель и знаменатель дроби 4 5 на 4 , а числитель и знаменатель дроби 3 4 умножим на 5 . Вместо дробей 4 5 и 3 4 получим соответственно 16 20 и 15 20 .
Приведение дробей к общему знаменателю
Приведение дробей к общему знаменателю — это умножение числителей и знаменателей дробей на такие множители, что в результате получаются идентичные дроби с одинаковым знаменателем.
Общий знаменатель: определение, примеры
Что такое общий знаменатель?
Общий знаменатель дробей — это любое положительное число, которое является общим кратным всех данных дробей.
Другими словами, общим знаменателем какого-то набора дробей будет такое натуральное число, которое без остатка делится на все знаменатели этих дробей.
Ряд натуральных чисел бесконечен, и поэтому, согласно определению, каждый набор обыкновенных дробей имеет бесконечное множество общих знаменателей. Иначе говоря, существует бесконечно много общих кратных для всех знаменателей исходного набора дробей.
Общий знаменатель для нескольких дробей легко найти, пользуясь определением. Пусть есть дроби 1 6 и 3 5 . Общим знаменателем дробей будет любое положительное общее кратное для чисел 6 и 5 . Такими положительными общими кратными являются числа 30, 60, 90, 120, 150, 180, 210 и так далее.
Пример 1. Общий знаменатель
Можно ди дроби 1 3 , 21 6 , 5 12 привести к общему знаменателю, который равен 150 ?
Чтобы выяснить, так ли это, нужно проверить, является ли 150 общим кратным для знаменателей дробей, то есть для чисел 3 , 6 , 12 . Другими словами, число 150 должно без остатка делиться на 3 , 6 , 12 . Проверим:
150 ÷ 3 = 50 , 150 ÷ 6 = 25 , 150 ÷ 12 = 12 , 5
Значит, 150 не является общим знаменателем указанных дробей.
Наименьший общий знаменатель
Наименьшее натуральное число из множества общих знаменателей какого-то набора дробей называется наименьшим общим знаменателем.
Наименьший общий знаменатель
Наименьший общий знаменатель дробей — это наименьшее число среди всех общих знаменателей этих дробей.
Наименьший общий делитель данного набора чисел — это наименьшее общее кратное (НОК). НОК всех знаменателей дробей является наименьшим общим знаменателем этих дробей.
Как найти наименьший общий знаменатель? Его нахождение сводится к нахождению наименьшего общего кратного дробей. Обратимся к примеру:
Пример 2. Найти наименьший общий знаменатель
Нужно найти наименьший общий знаменатель для дробей 1 10 и 127 28 .
Ищем НОК чисел 10 и 28 . Разложим их на простые множители и получим:
10 = 2 · 5 28 = 2 · 2 · 7 Н О К ( 15 , 28 ) = 2 · 2 · 5 · 7 = 140
Как привести дроби к наименьшему общему знаменателю
Существует правило, которое объясняет, как привести дроби к общему знаменателю. Правило состоит из трех пунктов.
Правило приведения дробей к общему знаменателю
- Найти наименьший общий знаменатель дробей.
- Для каждой дроби найти дополнительный множитель. Чтобы найти множитель нужно наименьший общий знаменатель разделить на знаменатель каждой дроби.
- Умножить числитель и знаменатель на найденный дополнительный множитель.
Рассмотрим применение этого правила на конкретном примере.
Пример 3. Приведение дробей к общему знаменателю
Есть дроби 3 14 и 5 18 . Приведем их к наименьшему общему знаменателю.
По правилу, сначала найдем НОК знаменателей дробей.
14 = 2 · 7 18 = 2 · 3 · 3 Н О К ( 14 , 18 ) = 2 · 3 · 3 · 7 = 126
Вычисляем дополнительные множители для каждой дроби. Для 3 14 дополнительный множитель находится как 126 ÷ 14 = 9 , а для дроби 5 18 дополнительный множитель будет равен 126 ÷ 18 = 7 .
Умножаем числитель и знаменатель дробей на дополнительные множители и получаем:
3 · 9 14 · 9 = 27 126 , 5 · 7 18 · 7 = 35 126 .
Приведение нескольких дробей к наименьшему общему знаменателю
По рассмотренному правилу к общему знаменателю можно приводить не только пары дробей, но и большее их количество.
Приведем еще один пример.
Пример 4. Приведение дробей к общему знаменателю
Привести дроби 3 2 , 5 6 , 3 8 и 17 18 к наименьшему общему знаменателю.
Вычислим НОК знаменателей. Находим НОК трех и большего количества чисел:
Н О К ( 2 , 6 ) = 6 Н О К ( 6 , 8 ) = 24 Н О К ( 24 , 18 ) = 72 Н О К ( 2 , 6 , 8 , 18 ) = 72
Далее вычислим дополнительные множители для каждой дроби.
Для 3 2 дополнительный множитель равен 72 ÷ 2 = 36 , для 5 6 дополнительный множитель равен 72 ÷ 6 = 12 , для 3 8 дополнительный множитель равен 72 ÷ 8 = 9 , наконец, для 17 18 дополнительный множитель равен 72 ÷ 18 = 4 .
Умножаем дроби на дополнительные множители и переходим к наименьшему общему знаменателю:
3 2 · 36 = 108 72 5 6 · 12 = 60 72 3 8 · 9 = 27 72 17 18 · 4 = 68 72
Источник
Математика. 5 класс
Конспект урока
Приведение дробей к общему знаменателю
Перечень рассматриваемых вопросов:
- основное свойство дроби;
- общий знаменатель дробей;
- дополнительный множитель;
- НОК двух чисел;
- наименьший общий знаменатель.
Общий знаменатель – это число всегда положительное, на которое делятся знаменатели данных дробей.
Наименьший общий знаменатель – это наименьшее положительное число, кратное знаменателям данных дробей.
Дополнительный множитель – это число, на которое надо умножить знаменатель дроби, чтобы получить новый знаменатель.
- Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.
- Чулков П. В. Математика: тематические тесты. 5 класс. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. – М.: Просвещение, 2009. – 142 с.
- Шарыгин И. Ф. Задачи на смекалку: 5-6 классы. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.
Теоретический материал для самостоятельного изучения
Вы уже знаете, что дробь в математике – это число, состоящее из одной или нескольких частей единиц, и умеете определять и называть часть целого.
Вопрос: какая часть яблока на картинке?
Ответ:
Вопрос: какая часть пиццы осталась на тарелке?
Ответ: .
Или, например, круг разделили на восемь частей. Четыре части закрасили в другой цвет: значит, закрашено части круга.
Но, если посмотреть внимательнее, четыре доли круга, разделённого на восемь частей, – это ровно половина. Значит, дробь равна дроби
.
Вспомним основное свойство дроби.
Если числитель и знаменатель дроби умножить на одно и то же натуральное число, то получится равная ей дробь.
Дроби и
имеют разные знаменатели, но их можно привести к общему знаменателю.
Для этого найдём число, которое делится на 8 и 3, – например, число 24.
Дополнительный множитель обычно пишут слева над числителем:
Приведём дроби к знаменателю 24. Для этого умножим числитель и знаменатель дроби на дополнительный множитель 3.
Теперь умножим числитель и знаменатель дроби на дополнительный множитель 8.
Дробии
приведены к общему знаменателю.
Далее приведём дроби и
к наименьшему общему знаменателю.
Так как наименьшее общее кратное (НОК) чисел 36 и 54 равно 108, то наименьший общий знаменатель этих дробей также равен 108.
Соответственно, чтобы привести дробь к знаменателю 108, необходимо и числитель, и знаменатель дроби умножить на 3:
Чтобы привести дробь к тому же знаменателю, умножаем и числитель, и знаменатель этой дроби на 2:
Таким образом, алгоритм приведения дробей к наименьшему
- деление на простые множители знаменателей дробей;
- поиск наименьшего общего кратного(НОК)для знаменателей этих дробей;
- приведение дроби к общему знаменателю, то есть умножение и числителя, и знаменателя дроби на множитель.
Итак, сегодня мы научились находить наименьший общий знаменатель дробей двумя способами:
- первый способ – перемножить знаменатели этих дробей;
- второй способ – найти наименьшее общее кратное этих дробей.
№ 1. Для дроби выберите из представленных равную ей дробь со знаменателем 6; 15; 102:
Чтобы привести дробь к знаменателю 6, нужно числитель и знаменатель дроби умножить на дополнительный множитель 2:
Чтобы привести дробь к знаменателю 15, нужно числитель и знаменатель дроби умножить на дополнительный множитель 5:
Чтобы привести дробь к знаменателю 102, нужно числитель и знаменатель дроби умножить на дополнительный множитель 34:
Следовательно, правильный ответ:
№ 2. Какое число является наименьшим общим знаменателем дробей и
?
Чтобы найти наименьший общий знаменатель дробей и
, нужно:
- разложить на простые множители знаменатели дробей: 8 = 2 ∙ 2 ∙ 2 и 12 = 2 ∙ 2 ∙ 3;
- найти НОК (8, 12) = 24.
Источник