- Быстрое возведение чисел в квадрат без калькулятора
- Ключевые моменты
- Как считать еще быстрее
- Урок 7. Возведение в квадрат в уме
- Квадрат суммы и квадрат разности
- Квадрат близкий к известному квадрату
- На 1 больше:
- На 1 меньше:
- На 2 больше
- На 2 меньше
- Квадрат чисел, заканчивающихся на 5
- Квадрат чисел близких к 50
- Квадрат трехзначных чисел
- Тренировка
- Быстрое возведение чисел от 1 до 100 в квадрат
- Способы нахождения квадрата числа
Быстрое возведение чисел в квадрат без калькулятора
21 сентября 2013
Сегодня мы научимся быстро без калькулятора возводить большие выражения в квадрат. Под большими я подразумеваю числа в пределах от десяти до ста. Большие выражения крайне редко встречаются в настоящих задачах, а значения меньше десяти вы и так умеете считать, потому что это обычная таблица умножения. Материал сегодняшнего урока будет полезен достаточно опытным ученикам, потому что начинающие ученики просто не оценят скорость и эффективность этого приема.
Для начала давайте разберемся вообще, о чем идет речь. Предлагаю для примера сделать возведение произвольного числового выражения, как мы обычно это делаем. Скажем, 34. Возводим его, умножив само на себя столбиком:
1156 — это и есть квадрат 34.
Проблему данного способа можно описать двумя пунктами:
1) он требует письменного оформления;
2) в процессе вычисления очень легко допустить ошибку.
Сегодня мы научимся быстрому умножению без калькулятора, устно и практически без ошибок.
Итак, приступим. Для работы нам потребуется формула квадрата суммы и разности. Давайте запишем их:
Что нам это дает? Дело в том, что любое значение в пределах от 10 до 100 представимо в виде числа $a$, которое делится на 10, и числа $b$, которое является остатком от деления на 10.
Например, 28 можно представить в следующем виде:
Аналогично представляем оставшиеся примеры:
Что дает нам такое представление? Дело в том, что при сумме или разности, мы можем применить вышеописанные выкладки. Разумеется, чтобы сократить вычисления, для каждого из элементов следует выбрать выражение с наименьшим вторым слагаемым. Например, из вариантов $20+8$ и $30-2$ следует выбрать вариант $30-2$.
Аналогично выбираем варианты и для остальных примеров:
Почему следует стремиться к уменьшению второго слагаемого при быстром умножении? Все дело в исходных выкладках квадрата суммы и разности. Дело в том, что слагаемое $2ab$ с плюсом или с минусом труднее всего считается при решении настоящих задач. И если множитель $a$, кратный 10, всегда перемножается легко, то вот с множителем $b$, который является числом в пределах от одного до десяти, у многих учеников регулярно возникают затруднения.
Можете самостоятельно попробовать рассчитать оба разложения, и вы убедитесь, что разложение с наименьшим вторым слагаемым считается проще. А мы перейдем к примерам, которые посчитаем без калькулятора:
Вот так за три минуты мы сделали умножение восьми примеров. Это меньше 25 секунд на каждое выражение. В реальности после небольшой тренировки вы будете считать еще быстрее. На подсчет любого двухзначного выражения у вас будет уходить не более пяти-шести секунд.
Но и это еще не все. Для тех, кому показанный прием кажется недостаточно быстрым и недостаточно крутым, предлагаю еще более быстрый способ умножения, который однако работает не для всех заданий, а лишь для тех, которые на единицу отличаются от кратных 10. В нашем уроке таких значений четыре: 51, 21, 81 и 39.
Казалось бы, куда уж быстрее, мы и так считаем их буквально в пару строчек. Но, на самом деле, ускориться можно, и делается это следующим образом. Записываем значение, кратное десяти, которое наиболее близкое нужному. Например, возьмем 51. Поэтому для начала возведем пятьдесят:
Значения, кратные десяти, поддаются возведению в квадрат намного проще. А теперь к исходному выражению просто добавляем пятьдесят и 51. Ответ получится тот же самый:
И так со всеми числами, отличающимися на единицу.
Если значение, которое мы ищем, больше, чем то, которое мы считаем, то к полученному квадрату мы прибавляем числа. Если же искомое число меньше, как в случае с 39, то при выполнении действия, из квадрата нужно вычесть значение. Давайте потренируемся без использования калькулятора:
Как видите, во всех случаях ответы получаются одинаковыми. Более того, данный прием применим к любым смежным значениям. Например:
При этом нам совсем не нужно вспоминать выкладки квадратов суммы и разности и использовать калькулятор. Скорость работы выше всяких похвал. Поэтому запоминайте, тренируйтесь и используйте на практике.
Ключевые моменты
С помощью этого приема вы сможете легко делать умножение любых натуральных чисел в пределах от 10 до 100. Причем все расчеты выполняются устно, без калькулятора и даже без бумаги!
Для начала запомните квадраты значений, кратных 10:
Далее — выкладки квадрата суммы или разности, в зависимости от того, к какому опорному значению ближе наше искомое выражение. Например:
Как считать еще быстрее
Но это еще не все! С помощью данных выражений моментально можно сделать возведение в квадрат чисел, «смежных» с опорными. Например, мы знаем 152 (опорное значение), а надо найти 142 (смежное число, которое на единицу меньше опорного). Давайте запишем:
Обратите внимание: никакой мистики! Квадраты чисел, отличающиеся на 1, действительно получаются из умножения самих на себя опорных чисел, если вычесть или добавить два значения:
Почему так происходит? Давайте запишем формулу квадрата суммы (и разности). Пусть $n$ — наше опорное значение. Тогда они считаются так:
— это и есть формула.
— аналогичная формула для чисел, больших на 1.
Надеюсь, данный прием сэкономит вам время на всех ответственных контрольных и экзаменах по математике. А у меня на этом все. До встречи!
Источник
Урок 7. Возведение в квадрат в уме
Умение считать в уме квадраты чисел может пригодиться в разных жизненных ситуациях, например, для быстрой оценки инвестиционных сделок, для подсчета площадей и объемов, а также во многих других случаях. Кроме того, умение считать квадраты в уме может служить демонстрацией ваших интеллектуальных способностей.
В этом уроке разобраны методики и алгоритмы, позволяющие научиться этому навыку.
Квадрат суммы и квадрат разности
Одним из самых простых способов возведения двузначных чисел в квадрат является методика, основанная на использовании формул квадрата суммы и квадрата разности:
Для использования этого метода необходимо разложить двузначное число на сумму числа кратного 10 и числа меньше 10. Например:
- 37 2 = (30+7) 2 = 30 2 + 2*30*7 + 7 2 = 900+420+49 = 1 369
- 94 2 = (90+4) 2 = 90 2 + 2*90*4 + 4 2 = 8100+720+16 = 8 836
Практически все методики возведения в квадрат (которые описаны ниже) основываются на формулах квадрата суммы и квадрата разности. Эти формулы позволили выделить ряд алгоритмов упрощающих возведение в квадрат в некоторых частных случаях.
Квадрат близкий к известному квадрату
Если число, возводимое в квадрат, находится близко к числу, квадрат которого мы знаем, можно использовать одну из четырех методик для упрощенного счета в уме:
На 1 больше:
Методика: к квадрату числа на единицу меньше прибавляем само число и число на единицу меньше.
- 31 2 = 30 2 + 31 + 30 = 961
- 16 2 = 15 2 + 15 + 16 = 225 + 31 = 256
На 1 меньше:
Методика: из квадрата числа на единицу больше вычитаем само число и число на единицу больше.
- 19 2 = 20 2 – 19 – 20 = 400 – 39 = 361
- 24 2 = 25 2 – 24 – 25 = 625 – 25 – 24 = 576
На 2 больше
Методика: к квадрату числа на 2 меньше прибавляем удвоенную сумму самого числа и числа на 2 меньше.
- 22 2 = 20 2 + 2*(20+22) = 400 + 84 = 484
- 27 2 = 25 2 + 2*(25+27) = 625 + 104 = 729
На 2 меньше
Методика: из квадрата числа на 2 больше вычитаем удвоенную сумму самого числа и числа на 2 больше.
- 48 2 = 50 2 – 2*(50+48) = 2500 – 196 = 2 304
- 98 2 = 100 2 – 2*(100+98) = 10 000 – 396 = 9 604
Все эти методики можно легко доказать, выведя алгоритмы из формул квадрата суммы и квадрата разности (о которых сказано выше).
Квадрат чисел, заканчивающихся на 5
Чтобы возвести в квадрат числа, заканчивающиеся на 5. Алгоритм прост. Число до последней пятерки, умножаем на это же число плюс единица. К оставшемуся числу приписываем 25.
- 15 2 = (1*(1+1)) 25 = 225
- 25 2 = (2*(2+1)) 25 = 625
- 85 2 = (8*(8+1)) 25 = 7 225
Это верно и для более сложных примеров:
- 155 2 = (15*(15+1)) 25 = (15*16)25 = 24 025
Квадрат чисел близких к 50
Считать квадрат чисел, которые находятся в диапазоне от 40 до 60, можно очень простым способом. Алгоритм таков: к 25 прибавляем (или вычитаем) столько, насколько число больше (или меньше) 50. Умножаем эту сумму (или разность) на 100. К этому произведению добавляем квадрат разности числа, возводимого в квадрат, и пятидесяти. Посмотрите работу алгоритма на примерах:
- 44 2 = (25-6)*100 + 6 2 = 1900 + 36 = 1936
- 53 2 = (25+3)*100 + 3 2 = 2800 + 9 = 2809
Квадрат трехзначных чисел
Возведение в квадрат трехзначных чисел может быть осуществлено при помощи одной из формул сокращенного умножения:
Нельзя сказать, что этот способ является удобным для устного счета, но в особо сложных случаях его можно взять на вооружение:
436 2 = (400+30+6) 2 = 400 2 + 30 2 + 6 2 + 2*400*30 + 2*400*6 + 2*30*6 = 160 000 + 900 + 36 + 24 000 + 4 800 + 360 = 190 096
Тренировка
Если вы хотите прокачать свои умения по теме данного урока, можете использовать следующую игру. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что числа каждый раз разные.
Перед тем как начать игру, рекомендуем зарегистрироваться, чтобы результат был сохранен в вашей истории, и вы смогли бы видеть собственный прогресс.
Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.
Источник
Быстрое возведение чисел от 1 до 100 в квадрат
Вдохновленный этой статьей, решил поделиться с вами способом быстрого возведения в квадрат. Возведение в квадрат более редкая операция, нежели умножение чисел, но под нее существуют довольно интересные правила.
*квадраты до сотни
Для того, чтобы бездумно не возводить в квадрат по формуле все числа, нужно максимально упростить себе задачу следующими правилами.
Правило 1 (отсекает 10 чисел)
Для чисел, оканчивающихся на 0.
Если число заканчивается на 0, умножить его не сложнее, чем однозначное число. Стоит лишь дописать пару нулей.
В таблице отмечены красным.
Правило 2 (отсекает 10 чисел)
Для чисел, оканчивающихся на 5.
Чтобы возвести в квадрат двузначное число, оканчивающееся на 5, нужно умножить первую цифру (x) на (x+1) и дописать к результату “25”.
В таблице отмечены зеленым.
Правило 3 (отсекает 8 чисел)
Для чисел от 40 до 50.
Достаточно трудно, верно? Давайте разберем пример:
В таблице отмечены светло-оранжевым.
Правило 4 (отсекает 8 чисел)
Для чисел от 50 до 60.
Тоже достаточно трудно для восприятия. Давайте разберем пример:
В таблице отмечены темно-оранжевым.
Правило 5 (отсекает 8 чисел)
Для чисел от 90 до 100.
Похоже на правило 3, но с другими коэффициентами. Давайте разберем пример:
В таблице отмечены темно-темно-оранжевым.
Правило №6 (отсекает 32 числа)
Необходимо запомнить квадраты чисел до 40. Звучит дико и трудно, но на самом деле до 20 большинство людей знают квадраты. 25, 30, 35 и 40 поддаются формулам. И остается лишь 16 пар чисел. Их уже можно запомнить при помощи мнемоники (о которой я также хочу рассказать позднее) или любыми другими способами. Как таблицу умножения 🙂
В таблице отмечены синим.
Вы можете запомнить все правила, а можете запомнить выборочно, в любом случае все числа от 1 до 100 подчиняются двум формулам. Правила же помогут, не используя эти формулы, быстрее посчитать больше 70% вариантов. Вот эти две формулы:
Формулы (осталось 24 числа)
Для чисел от 25 до 50
Для чисел от 50 до 100
Конечно не стоит забывать про обычную формулу разложения квадрата суммы (частный случай бинома Ньютона):
UPDATE
Произведения чисел, близких к 100, и, в частности, их квадраты, также можно вычислять по принципу «недостатков до 100»:
Словами: из первого числа вычитаем «недостаток» второго до сотни и приписываем двузначное произведение «недостатков».
Для квадратов, соответственно, еще проще.
Возведение в квадрат, возможно, не самая полезная в хозяйстве вещь. Не сразу вспомнишь случай, когда может понадобиться квадрат числа. Но умение быстро оперировать числами, применять подходящие правила под каждое из чисел отлично развивает память и «вычислительные способности» вашего мозга.
Кстати, думаю, все читатели хабры знают, что 64^2 = 4096, а 32^2 = 1024.
Многие квадраты чисел запоминаются на ассоциативном уровне. Например, я легко запомнил 88^2 = 7744, из-за одинаковых чисел. У каждого наверняка найдутся свои особенности.
Две уникальные формулы я впервые нашел в книге «13 steps to mentalism», которая мало связана с математикой. Дело в том, что раньше (возможно, и сейчас) уникальные вычислительные способности были одним из номеров в сценической магии: фокусник рассказывал байку о том, как он получил сверхспособности и в доказательство этого моментально возводит числа до сотни в квадрат. В книге так же указаны способы возведения в куб, способы вычитания корней и кубических корней.
Если тема быстрого счета интересна — буду писать еще.
Замечания об ошибках и правки прошу писать в лс, заранее спасибо.
Источник
Способы нахождения квадрата числа
Предмет математики настолько серьезен, что нужно не упускать случая делать его немного занимательным.
§ 1. Магические квадраты. Исторические сведения
Среди различных занимательных вопросов теории чисел одним из интереснейших являются вопросы, связанные с магическими (волшебными) квадратами.
Тайна древнего талисмана
В Европе они появились в XIV веке. Или в XV . Мнения расходятся. Но и так, и этак – давние были времена.
Еще до своего появления в Европе они существовали века и десятки веков. Неизвестно, какая из древних цивилизаций была их родиной, неизвестна страна, неизвестен век, даже тысячелетие нельзя установить точно. Известно только, что эти талисманы появились до нашей эры и что их родиной был Древний Восток.
С незапамятных времен, научившись считать, люди познали меру количества – число. Вглядываясь в сочетания чисел, они с изумлением увидели, что числа имеют какую-то самостоятельную жизнь, удивительную и полную тайны; тайны необъяснимой и поэтому загадочной и многозначительной.
Оказалось, что, складывая различные числа, можно получить одно и то же число. Оказалось также, что, располагая эти числа правильными рядами, один под другим, в случае удачи, можно, складывая числа слева направо и сверху вниз, каждый раз получать одно и то же число. Наконец, кто-то придумал разделить числа линиями так, что каждое число оказалось в отдельной клетке. Так посвященные увидели квадрат, населенный числами, неизвестно что сулящий его владельцу, но, конечно, обладающий магической силой. Квадрат можно было резцом высечь на камне, тростниковым камышом написать на пергаменте, кончиком кисти, смоченным в растертой туши, нарисовать на бумаге, рыхлой и слабой.
Квадрат можно было продать верующим. Зашитый в ладанку, он становился амулетом и (конечно!) защитой его владельца от всякого зла.
В Китае квадрат 3х 3 называют Ло-Шу. И по сей день его можно увидеть на амулетах, которые носят в Восточной Азии и в Индии, и на многих пассажирских судах, где он украшает крышки столиков для карточных игр.
Некоторые представления о том, каких фантастических размеров достигали сочинения о магических квадратах (предмете, не имеющем сколько-нибудь принципиального значения), можно получить из того факта, что французский трактат на эту тему, выпущенный в 1838 году, когда о магических квадратах было известно намного меньше, чем теперь, вышел в трех объемистых томах.
С давних времен и поныне исследование магических квадратов процветало как своеобразный культ, часто не без мистического тумана. Среди лиц, занимавшихся их изучением, были и известные математики, как Артур Кели и Освальд Веблен, Леонард Эйлер и такие любители, как, например, Бенджамин Франклин.
Магический квадрат – это квадрат, разделенный на клетки (их количество одинаково по горизонтали и вертикали). Клетки заполнены числами от 1 до n 2 (n – порядок квадрата, то есть количество клеток по горизонтали или по вертикали) так, что сумма чисел во всех горизонтальных, вертикальных рядах и на главных диагоналях равна одному и тому же числу. Это число называется магической суммой (постоянной) квадрата и вычисляется по формуле:
Магических квадратов порядка 2 не существует, а порядка 3 существует только один (если не считать магических квадратов, получающихся из него при поворотах и отражениях), постоянная которого равна 15.
Как только переходим к порядку 4, сложность магических квадратов резко возрастает. Если и на этот раз не считать различными квадраты, которые можно перевести друг в друга поворотами и отражениями, то различных магических квадратов будет ровно 880 типов, причем многие из них будут даже «более магическими», чем это требуется по определению магического квадрата.
В начале XVI века магический квадрат был увековечен в искусстве. Знаменитый немецкий художник и гравер Альбрехт Дюрер выпустил в 1514 году гравюру, названную им «Меланхолия». На заднем плане гравюры, над фигурой крылатой женщины в одежде горожанки, помещен магический квадрат четвертого порядка.
Во времена Дюрера меланхолический темперамент считался свойственным творческому гению, он был уделом ученых мужей, «чья бледность – печать глубокой мысли». Прекрасная женщина Меланхолия на гравюре Дюрера, возможно, олицетворяет гений человеческой мысли, человеческого труда. Именно ему (гению) угрожает планета меланхоликов Сатурн.
Астрологи эпохи Возрождения связывали магические квадраты четвертого порядка с Юпитером. Такие квадраты считались действенным средством от меланхолии (поскольку Юпитер и Сатурн, если верить астрологам, враждовали между собой).
Вот поэтому в правом верхнем углу гравюры Дюрера изображен магический квадрат именно четвертого порядка.
Дюреровский квадрат симметричен, так как сумма любых двух входящих в него чисел, расположенных симметрично относительно его центра, равна 17.
Способ построения симметричных квадратов очень прост: вписать по порядку числа от 1 до 16 в клетки квадрата 4 ´ 4, а затем поменять местами числа, расположенные на главных диагоналях, относительно центра, и симметричный квадрат готов.
Дюрер переставил у своего квадрата два соседних столбца (что не повлияло на свойства квадрата) так, что числа в двух средних клетках нижней строки стали указывать дату создания гравюры: 1514.
Древнейший из дошедших до нас квадратов четвертого порядка был обнаружен в надписи XI или XII века, найденной в Кхадружен (Индия). Этот магический квадрат относится к разновидности так называемых «дьявольских» квадратов.
Так что же определяет интерес к магическим квадратам в наше время?
А. Обри: «. ценность теории определяется не только возможностью ее практического использования, для которого она разработана, но также ее способностью воспитывать наш ум, доставлять ему питание, поддерживающее его жизнь, везде отыскивать новые истины и выяснять их значение без помощи извне. С этой точки зрения изучение магических квадратов, не требуя глубоких знаний, представляет собой превосходную умственную гимнастику, развивающую способность понимать идеи разрешения, сочетания, симметрии, обобщения и т. д. Можно сказать, что эта умственная гимнастика включает такие теоретические построения, занимаясь которыми упражняется ум.
С другой стороны, . естественная красота, которую содержат магические квадраты, многократно встречающаяся и разнообразная, достаточна для того, чтобы привлечь любителей. »
§ 2. Классические алгоритмические методы построения магических квадратов
2.1. Индийский метод построения магических квадратов нечетного порядка
1 ° . Числа от 1 до n 2 поочередно вписываются в клетки основного квадрата.
2 ° . Если некоторое правило требует вписать данное число в клетку, лежащую вне основного квадрата, то вместо этого рассматриваемое число вписывается в эквивалентную клетку основного квадрата.
3 ° . Число 1 вписывается в среднюю клетку верхнего ряда, то есть в клетку с координатами (m, 2m).
4 ° . Если число z вписано в клетку с координатами (х, у), то следующее число z+1 вписывается в клетку с координатами (х+1, у+1), то есть в клетку, смежную с клеткой (х, у), в направлении восходящей диагонали (при условии, что эта последняя клетка еще свободна от чисел).
5 ° . Если клетка с координатами (х+1, у+1) уже занята некоторым числом, то число z+1 вписывается в клетку с координатами (х, у-1), то есть в клетку, непосредственно примыкающую снизу к клетке (х, у).
На рисунке изображен магический квадрат третьего порядка. Для ясности на этом рисунке заполнены также некоторые клетки вне основного квадрата.
Источник