Способы нахождения корней квадратного трехчлена

Содержание
  1. Квадратный трехчлен. Разложение квадратного трехчлена на множители
  2. Квадратный трехчлен – это многочлен вида \(ax^2+bx+c\) (\(a≠0\)).
  3. Корень квадратного трехчлена:
  4. Значение переменной \(x\), при котором квадратный трехчлен обращается в ноль, называют его корнем.
  5. Чтобы найти корни квадратного трехчлена нужно решить соответствующее квадратное уравнение.
  6. Разложение квадратного трёхчлена на множители:
  7. Квадратный трехчлен \(ax^2+bx+c\) можно разложить как \(a(x-x_1 )(x-x_2)\), если дискриминант уравнения \(ax^2+bx+c=0\) больше нуля \(x_1\) и \(x_2\) — корни того же уравнения).
  8. Квадратный трехчлен \(ax^2+bx+c\) можно представить как \(a(x-x_1)^2\), если дискриминант уравнения \(ax^2+bx+c=0\) равен нулю.
  9. Квадратный трехчлен \(ax^2+bx+c\) не раскладывается на множители, если дискриминант уравнения \(ax^2+bx+c=0\) меньше нуля.
  10. Квадратный трехчлен. Корень квадратного трехчлена
  11. Квадратный трёхчлен и его корни
  12. Урок 3. Алгебра 9 класс ФГОС
  13. В данный момент вы не можете посмотреть или раздать видеоурок ученикам
  14. Получите невероятные возможности
  15. Конспект урока «Квадратный трёхчлен и его корни»
  16. Разложение квадратного трёхчлена на множители
  17. Как разложить на множители квадратный трёхчлен
  18. Как это работает
  19. Примеры разложений
  20. Задания для самостоятельного решения

Квадратный трехчлен. Разложение квадратного трехчлена на множители

Квадратный трехчлен – это многочлен вида \(ax^2+bx+c\) (\(a≠0\)).

Почему его называют именно так? Потому что, наибольшая степень у него – квадрат, а состоит он из трех слагаемых ( одночленов ). Вот и получается – квадратный трехчлен.

Примеры не квадратных трехчленов:

\(x^3-3x^2-5x+6\) — кубический четырёхчлен
\(2x+1\) — линейный двучлен

Корень квадратного трехчлена:

Значение переменной \(x\), при котором квадратный трехчлен обращается в ноль, называют его корнем.

Пример:
У трехчлена \(x^2-2x+1\) корень \(1\), потому что \(1^2-2·1+1=0\)
У трехчлена \(x^2+2x-3\) корни \(1\) и \(-3\), потому что \(1^2+2-3=0\) и \((-3)^2-6-3=9-9=0\)

Чтобы найти корни квадратного трехчлена нужно решить соответствующее квадратное уравнение.

Например: если нужно найти корни для квадратного трехчлена \(x^2-2x+1\), приравняем его к нулю и решим уравнение \(x^2-2x+1=0\).

Готово. Корень равен \(1\).

Разложение квадратного трёхчлена на множители:

Квадратный трехчлен \(ax^2+bx+c\) можно разложить как \(a(x-x_1 )(x-x_2)\), если дискриминант уравнения \(ax^2+bx+c=0\) больше нуля \(x_1\) и \(x_2\) — корни того же уравнения).

Например, рассмотрим трехчлен \(3x^2+13x-10\).
У квадратного уравнения \(3x^2+13x-10=0\) дискриминант равен 289 (больше нуля), а корни равны \(-5\) и \(\frac<2><3>\). Поэтому \(3x^2+13x-10=3(x+5)(x-\frac<2><3>)\). В верности этого утверждения легко убедится – если мы раскроем скобки , то получим исходный трехчлен.

Квадратный трехчлен \(ax^2+bx+c\) можно представить как \(a(x-x_1)^2\), если дискриминант уравнения \(ax^2+bx+c=0\) равен нулю.

Например, рассмотрим трехчлен \(x^2+6x+9\).
У квадратного уравнения \(x^2+6x+9=0\) дискриминант равен \(0\), а единственный корень равен \(-3\). Значит, \(x^2+6x+9=(x+3)^2\) (здесь коэффициент \(a=1\), поэтому перед скобкой не пишется – незачем). Обратите внимание, что тоже самое преобразование можно сделать и по формулам сокращенного умножения .

Квадратный трехчлен \(ax^2+bx+c\) не раскладывается на множители, если дискриминант уравнения \(ax^2+bx+c=0\) меньше нуля.

Например, у трехчленов \(x^2+x+4\) и \(-5x^2+2x-1\) – дискриминант меньше нуля. Поэтому разложить их на множители невозможно.

Пример. Разложите на множители \(2x^2-11x+12\).
Решение:
Найдем корни квадратного уравнения \(2x^2-11x+12=0\)

Полученный ответ, может быть, записать по-другому: \((2x-3)(x-4)\).

Пример. (Задание из ОГЭ) Квадратный трехчлен разложен на множители \(5x^2+33x+40=5(x++ 5)(x-a)\). Найдите \(a\).
Решение:
\(5x^2+33x+40=0\)
\(D=33^2-4 \cdot 5 \cdot 40=1089-800=289=17^2\)
\(x_1=\frac<-33-17><10>=-5\)
\(x_2=\frac<-33+17><10>=-1,6\)
\(5x^2+33x+40=5(x+5)(x+1,6)\)
Ответ: \(-1,6\)

Источник

Квадратный трехчлен. Корень квадратного трехчлена

Квадратным трехчленом называется многочлен вида \(ax^2 + bx + c\) , где \(x\) – переменная, \(a, b, c\) – некоторые числа, причем \(a ≠ 0\) .

Числа \(a,b,c\) называются коэффициентами. Число \(a\) называется старшим коэффициентом, число \(b\) – коэффициентом при \(x\) , а число \(c\) называют свободным членом.

Корнем квадратного трехчлена \(ax^2 +bx+c\) называют любое значение переменной \(x\) , такое, что квадратный трехчлен \(ax^2 +bx+c\) обращается в нуль.

Читайте также:  Способы разграничения полномочий между государственными органами

Для того чтобы найти корни квадратного трехчлена, необходимо решить квадратное уравнение вида \(ax^2 +bx+c =0\) .

Нахождение корней квадратного трехчлена

1 способ. Нахождение корней квадратного трехчлена по формуле.

  1. Найти значение дискриминанта по формуле \(D =b^2-4ac\) .
  2. В зависимости от значения дискриминанта вычислить корни по формулам:

a) если \(D>0\) , то квадратный трехчлен имеет два корня: \(x_1=\frac<-b-\sqrt><2a>; x_2=\frac<-b+\sqrt><2a>;\)

b) если \(D=0\) , то квадратный трехчлен имеет один корень: \(x=-\frac<2a>;\)

c) если \(D , то квадратный трехчлен не имеет корней.

2 способ. Нахождение корней квадратного трехчлена выделением полного квадрата.

Рассмотрим на примере приведенного квадратного трехчлена. Приведенное квадратное уравнение – уравнение, у которого на старший коэффициент равен единице.

Найдем корни квадратного трехчлена \(x^2-4x-60\) . Для этого решим следующее квадратное уравнение: \(x^2-4x-60=0\) .

Выделим полный квадрат из трехчлена, стоящего в левой части уравнения:

Левую часть уравнения разложим на множители по формуле разности квадратов:

Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:

Источник

Квадратный трёхчлен и его корни

Урок 3. Алгебра 9 класс ФГОС

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Квадратный трёхчлен и его корни»

Квадратный трёхчлен, это тот многочлен, который записан в левой части квадратного уравнения:

Коэффициенты квадратного трёхчлена имею такие же названия, как и коэффициенты квадратного уравнения:

Найдите среди записанных многочленов те, которые являются квадратными трёхчленами:

Значение переменной, при котором многочлен равен нулю, называют корнем многочлена.

Найдём корни многочлена:

Для этого решим уравнение:

Левую часть уравнения можно разложить на множители с помощью формулы разности квадратов, получим:

Произведение равно нулю, когда хотя бы один из множителей равен нулю, получаем:

Чтобы найти корни квадратного трёхчлена

нужно решить квадратное уравнение

Найдите корни квадратных трёхчленов:

1. Найдём корни первого квадратного трёхчлена

Решим квадратное уравнение:

2. Найдём корни второго квадратного трёхчлена:

Решим квадратное уравнение:

3. Найдём корни ещё одного квадратного трёхчлена:

Решим квадратное уравнение:

Ответ: корней нет.

Видим, что, как и квадратное уравнение, квадратный трёхчлен может иметь 1 корень, 2 корня или не иметь корней.

Решим задачу. Докажите, что из всех прямоугольников с периметром 20 сантиметров наибольшую площадь имеет квадрат.

Пусть х – одна сторона прямоугольника, 10 – х — вторая сторона прямоугольника. Тогда площадь прямоугольника равна х(10 – х).

Последнее выражение принимает всегда неположительные значения, наибольшее из них:

Соответственно наибольшая площадь будет у прямоугольника со стороной:

При решении задач с квадратным трёхчленом удобно использовать такое преобразование, как выделение квадрата.

Потренируемся выделять квадрат двучлена из квадратного трёхчлена.

Источник

Разложение квадратного трёхчлена на множители

Как разложить на множители квадратный трёхчлен

Квадратный трёхчлен — это многочлен вида ax 2 + bx + c .

В прошлых уроках мы решали квадратные уравнения. Общий вид таких уравнений выглядел так:

Левая часть этого уравнения является квадратным трёхчленом.

Одним из полезных преобразований при решении задач является разложение квадратного трёхчлена на множители. Для этого исходный квадратный трёхчлен приравнивают к нулю и решают квадратное уравнение. В этом случае говорят, что выполняется поиск корней квадратного трёхчлена.

Полученные корни x1 и x2 следует подстáвить в следующее выражение, которое и станет разложением:

Таким образом, чтобы разложить квадратный трёхчлен на множители при помощи решения квадратного уравнения, нужно воспользоваться следующей готовой формулой:

Где левая часть — исходный квадратный трёхчлен.

Читайте также:  Способы идентификации клиента это

Пример 1. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена. Для этого приравняем данный квадратный трёхчлен к нулю и решим квадратное уравнение:

В данном случае коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента. Чтобы сэкономить время, некоторые подробные вычисления можно пропустить:

Итак, x1 = 6 , x2 = 2 . Теперь воспользуемся формулой ax 2 + bx + c = a(xx1)(xx2). В левой части вместо выражения ax 2 + bx + c напишем свой квадратный трёхчлен x 2 8x + 12. А в правой части подставим имеющиеся у нас значения. В данном случае a = 1, x1 = 6, x2 = 2

Если a равно единице (как в данном примере), то решение можно записать покороче:

Чтобы проверить правильно ли разложен квадратный трёхчлен на множители, нужно раскрыть скобки у правой части получившегося равенства.

Раскроем скобки у правой части равенства, то есть в выражении (x − 6)(x − 2) . Если мы всё сделали правильно, то должен получиться квадратный трёхчлен x 2 8x + 12

Пример 2. Разложить на множители следующий квадратный трёхчлен:

Приравняем данный квадратный трёхчлен к нулю и решим уравнение:

Как и в прошлом примере коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента:

Итак, x1 = 4 , x2 = 3 . Приравняем квадратный трехчлен 2x 2 − 14x + 24 к выражению a(xx1)(xx2) , где вместо переменных a , x1 и x2 подстáвим соответствующие значения. В данном случае a = 2

Выполним проверку. Для этого раскроем скобки у правой части получившегося равенства. Если мы всё сделали правильно, то должен получиться квадратный трёхчлен 2x 2 − 14x + 24

Как это работает

Разложение квадратного трёхчлена на множители происходит, если вместо коэффициентов квадратного трёхчлена подстáвить теорему Виета и выполнить тождественные преобразования.

Для начала рассмотрим случай, когда коэффициент a квадратного трёхчлена равен единице:

Вспоминаем, что если квадратное уравнение является приведённым, то теорема Виета имеет вид:

Тогда приведённый квадратный трехчлен x 2 + bx + c можно разложить на множители следующим образом. Сначала выразим b из уравнения x1 + x2 = −b . Для этого можно умножить обе его части на −1

Переменную c из теоремы Виета выражать не нужно — она уже выражена. Достаточно поменять местами левую и правую часть:

Теперь подставим выраженные переменные b и c в квадратный трёхчлен x 2 + bx + c

Раскроем скобки там где это можно:

В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:

Из первых скобок вынесем общий множитель x , из вторых скобок — общий множитель −x2

Далее замечаем, что выражение ( xx1 ) является общим множителем. Вынесем его за скобки:

Но это был случай, когда исходный квадратный трёхчлен является приведённым. В нём коэффициент a равен единице. И соответственно, в формуле разложения такого квадратного трехчлена коэффициент a можно опустить.

Теперь рассмотрим случай, когда коэффициент a квадратного трёхчлена не равен единице. Это как раз тот случай, когда в формуле разложения присутствует перед скобками коэффициент a

Вспоминаем, что если квадратное уравнение не является приведённым, то есть имеет вид ax 2 + bx + c = 0 , то теорема Виета принимает следующий вид:

Это потому что теорема Виета работает только для приведённых квадратных уравнений. А чтобы уравнение ax 2 + bx + c = 0 стало приведённым, нужно разделить обе его части на a

Далее чтобы квадратный трёхчлен вида ax 2 + bx + c разложить на множители, нужно вместо b и c подставить соответствующие выражения из теоремы Виета. Но в этот раз нам следует использовать равенства и

Для начала выразим b и c . В первом равенстве умножим обе части на a . Затем обе части получившегося равенства умножим на −1

Теперь из второго равенства выразим c . Для этого умножим обе его части на a

Теперь подставим выраженные переменные b и с в квадратный трёхчлен ax 2 + bx + c . Для наглядности каждое преобразование будем выполнять на новой строчке:

Читайте также:  Маска гиалуроновая либридерм каскадное увлажнение способ применения

Здесь вместо переменных b и c были подставлены выражения −ax1 − ax2 и ax1x2 , которые мы ранее выразили из теоремы Виета. Теперь раскроем скобки там где это можно:

В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:

Теперь из первых скобок вынесем общий множитель ax , а из вторых — общий множитель −ax2

Далее замечаем, что выражение x − x1 тоже является общим множителем. Вынесем его за скобки:

Вторые скобки содержат общий множитель a . Вынесем его за скобки. Его можно расположить в самом начале выражения:

Отметим, что если квадратный трехчлен не имеет корней, то его нельзя разложить на множители. Действительно, если не найдены корни квадратного трёхчлена, то нéчего будет подставлять в выражение a(xx1)(xx2) вместо переменных x1 и x2 .

Если квадратный трёхчлен имеет только один корень, то этот корень одновременно подставляется в x1 и x2 . Например, квадратный трёхчлен x 2 + 4x + 4 имеет только один корень −2

Тогда значение −2 в процессе разложения на множители будет подставлено вместо x1 и x2 . А значение a в данном случае равно единице. Её можно не записывать, поскольку это ничего не даст:

Скобки внутри скобок можно раскрыть. Тогда получим следующее:

При этом если нужно получить короткий ответ, последнее выражение можно записать в виде (x + 2) 2 поскольку выражение (x + 2)(x + 2) это перемножение двух сомножителей, каждый из которых равен (x + 2)

Примеры разложений

Пример 1. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения. В левой части напишем квадратный трёхчлен 3x 2 − 2x − 1 , а в правой части — его разложение в виде a(xx1)(xx2) , где вместо a , x1 и x2 подстáвим соответствующие значения:

Во вторых скобках можно заменить вычитание сложением:

Пример 2. Разложить на множители следующий квадратный трёхчлен:

Упорядочим члены так, чтобы старший коэффициент располагался первым, средний — вторым, свободный член — третьим:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения:

Упростим получившееся разложение. Вынесем за первые скобки общий множитель 3

Теперь воспользуемся сочетательным законом умножения. Напомним, что он позволяет перемножать сомножители в любом порядке. Умножим 3 на вторые скобки. Это позвóлит избавиться от дроби в этих скобках:

Пример 3. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения:

Пример 4. Найдите значение k , при котором разложение на множители трёхчлена 3x 2 − 8x + k содержит множитель (x − 2)

Если разложение содержит множитель (x − 2) , то один из корней квадратного трёхчлена равен 2 . Пусть корень 2 это значение переменной x1

Чтобы найти значение k , нужно знать чему равен второй корень. Для его определения воспользуемся теоремой Виета.

В данном случае квадратный трёхчлен не является приведённым, поэтому сумма его корней будет равна дроби , а произведение корней — дроби

Выразим из первого равенства переменную x2 и сразу подстáвим найденное значение во второе равенство вместо x2

Теперь из второго равенства выразим k . Так мы найдём его значение.

Пример 5. Разложить на множители следующий квадратный трёхчлен:

Перепишем данный трёхчлен в удобный для нас вид. Если в первом члене заменить деление умножением, то получим . Если поменять местами сомножители, то получится . То есть коэффициент a станет равным

Коэффициент b можно перевести в обыкновенную дробь. Так проще будет искать дискриминант:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения:

Задания для самостоятельного решения

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Источник

Оцените статью
Разные способы