Способы наблюдения интерференции света опыт юнга

Способы наблюдения интерференции света опыт юнга

Как было уже показано, для наблюдения интерференции света необходимо иметь когерентные световые пучки, для чего применяются различные приёмы. В опыте Юнга когерентные пучки получали разделением и последующим сведением световых лучей, исходящих из одного и того же источника (метод деления волнового фронта).

Рассмотрим интерференционную картину, полученную методом Юнга (рис. 8.2).

Свет от источника S, прошедший через узкую щель в экране А, падет на экран В с двумя щелями S1 и S2, расположенными достаточно близко друг к другу на расстоянии d. Эти щели являются когерентными источниками света. Интерференция наблюдается в области, в которой перекрываются волны от этих источников (поле интерференции). На экране Э мы видим чередование полос с максимумом и минимумом интенсивности света.

Экран расположен на расстоянии l от щелей, причем .

Рассмотрим две световые волны, исходящие из точечных источников S1 и S2. Показатель преломления среды – n.

Вычислим ширину полос интерференции (темных и светлых полос).

Интенсивность в произвольной точке P экрана, лежащей на расстоянии x от О, определяется (для вакуума, когда n = 1) оптической разностью хода .

Из рис. 8.1 имеем

; ,

отсюда , или

.

Из условия следует, что , поэтому

Отсюда получим, что максимумы интенсивности будут наблюдаться в случае, если

(m = 0, 1, 2, …) (8.2.2)

а минимумы – в случае, если

Расстояние между двумя соседними максимумами (или минимумами) равно:

и не зависит от порядка интерференции (величины m) и является постоянной для данных l, d.

Расстояние между двумя соседними максимумами называется расстоянием между интерференционными полосами, а расстояние между соседними минимумами – шириной интерференционной полосы.

Т.к. обратно пропорционально d, при большом расстоянии между источниками, например при , отдельные полосы становятся неразличимыми, сравнимыми с длиной волны . Поэтому необходимо выполнять условие .

Этот опыт показывает, что интерференционная картина, создаваемая на экране двумя когерентными источниками света, представляет собой чередование светлых и темных полос. Главный максимум, соответствующий , проходит через точку О. Вверх и вниз от него располагаются максимумы (минимумы) первого ( ), второго ( ) порядков и т. д.

Из перечисленных формул видно, что ширина интерференционной полосы и расстояние между ними зависят от длины волны λ. Только в центре картины при совпадут максимумы всех волн. По мере удаления от центра максимумы разных цветов смещаются друг относительно друга все больше и больше. Это приводит, при наблюдении в белом свете, ко все большему размытию интерференционных полос. Интерференционная картина будет окрашенной, но нечеткой (смазанной).

Измерив , зная l и d, можно вычислить длину волны λ. Именно так вычисляют длины волн разных цветов в спектроскопии.

Источник

Способы наблюдения интерференции света опыт юнга

Методы наблюдения интерференции

Свет, испускаемый обычными источниками, можно рассматривать как хаотическую последовательность отдельных цугов синусоидальных волн. Длительность отдельного цуга не превышает 10 — 8 с даже в тех случаях, когда атомы источника не взаимодействуют (газоразрядные лампы низкого давления). Любой регистрирующий прибор имеет значительно большее время разрешения, поэтому наблюдение интерференции невозможно.

Образование интерференционной картины можно наблюдать в рассмотренном нами в п. 8.2 опыте Юнга, использующем метод деления волнового фронта (рис. 8.3).

Прошедший через узкую длинную щель S свет, вследствие дифракции образует расходящийся пучок, который падает на второй экран B с двумя, параллельными между собой узкими щелями S1 и S2, расположенными близко друг к другу на равных расстояниях от S. Эти щели действуют как вторичные синфазные источники, и исходящие от них волны, перекрываясь, создают интерференционную картину, наблюдаемую на удаленном экране C. Расстояние между соседними полосами равно:

.

Измеряя ширину интерференционных полос, Юнг в 1802 г. впервые определил длины световых волн для разных цветов, хотя эти измерения и не были точными.

Другой интерференционный опыт, аналогичный опыту Юнга, но в меньшей степени осложненный явлениями дифракции и более светосильный, был осуществлен О. Френелем в 1816 г. Две когерентные световые волны получаются в результате отражения от двух зеркал М и N, плоскости которых наклонены под небольшим углом φ друг к другу (рис. 8.4).

Источником служит узкая ярко освещенная щель S, параллельная ребру между зеркалами. Отраженные от зеркал пучки падают на экран, и в той области, где они перекрываются (поле интерференции), возникает интерференционная картина. От прямого попадания лучей от источника S экран защищен ширмой . Для расчета освещенности J экрана можно считать, что интерферирующие волны испускаются вторичными источниками и , представляющими собой мнимые изображения щели S в зеркалах. Поэтому J будет определяться формулой двулучевой интерференции, в которой расстояние l от источников до экрана следует заменить на , где — расстояние от S до ребра зеркал, b — расстояние от ребра до экрана (см. рис 8.4.). Расстояние d между вторичными источниками равно: . Поэтому ширина интерференционной полосы на экране равна:

.

В данном интерференционном опыте, также предложенном Френелем, для разделения исходной световой волны на две используют призму с углом при вершине, близким к 180°.

Источником света служит ярко освещенная узкая щель S, параллельная преломляющему ребру бипризмы (рис. 8.5).

Можно считать, что здесь образуются два близких мнимых изображения S1 и S2 источника S, так как каждая половина бипризмы отклоняет лучи на небольшой угол .

Аналогичное бипризме Френеля устройство, в котором роль когерентных источников играют действительные изображения ярко освещенной щели, получается, если собирающую линзу разрезать по диаметру и половинки немного раздвинуть (рис. 8.6).

Прорезь закрывается непрозрачным экраном А, а падающие на линзу лучи проходят через действительные изображения щели и и дальше перекрываются, образуя интерференционное поле.

Источник

Читайте также:  Что такое атс способ образования
Оцените статью
Разные способы