Способы модуляции
Для согласования спектра цифровых сигналов с полосой пропускания каналов применяются разнообразные виды модуляции. Различают следующие виды модуляции: аналоговая модуляция, аналого-цифровая и цифро-аналоговая.
Модуляцией называется процесс преобразования информационного модулирующего сигнала в форму, пригодного для передачи по соответствующему каналу с изменением параметров другого несущего сигнал. Параметрами несущего сигнала являются его амплитуда, частота, фаза.
Аналоговая модуляция используется для преобразования одного аналогового информационного сигнала в другой аналоговый несущий сигнал. Какой из параметров изменяется, получают следующие виды аналоговой модуляции.
Амплитудная модуляция АМ (amplitude modulation) – информационный сигнал кодируется в виде изменения амплитуды несущего сигнал. Этот тип модуляции используется в системе радиовещания.
Частотная модуляция FM (frequency modulation) – информационный сигнал кодируется в виде частоты несущего сигнала. Этот тип модуляции используется в системах телевещания и спутниковых системах связи.
Фазовая модуляция PM (phase modulation) – информационный сигнал кодирует в виде изменения фазы (временного сдвига) несущего сигнал. Этот тип модуляции применяется в тех же системах, что и FM. Если изменяется несколько параметров, можно получить соответственно амплитудно — фазовой или частотно — фазовой модуляцией.
Цифро — аналоговая модуляция используется для преобразования цифровых сигналов в аналоговую форму (например, в модемах).
Для цифровых сигналов модулирующая функция принимает дискретные значения (0,1) или (1, -1), что приводит к скачкообразным изменениям параметров несущего сигнала. Такая модуляция называется манипуляцией.
Различают следующие виды цифро-аналоговой модуляции:
Цифро-аналоговая модуляция со сдвигом амплитуд ASK (Amplitude Shift Keying) – информационный сигнал кодирует изменения амплитуды несущего сигнала.
Кодирование со сдвигом частот FSK (Frequency Shift Keying) – информационный сигнал кодирует изменение частоты (временного сдвига) несущего сигнал. В зависимости от количества используемых интервалов сдвига этот метод позволяет представить одним модулированным сигналом несколько информационных бит.
Кодирование со сдвигом фазы PSK (Phase Shift Keying) – информационный сигнал кодируется изменением фазы (сдвига) несущего сигнала. Различают абсолютную и относительную фазовую модуляцию.
При абсолютной двухпозиционной фазовой модуляции BPSK (Binary Phase Shift Keying), фаза модулированного колебания при входном сигнале двоичного «0» совпадает со значением фазы опорного (несущего) сигнала, при сигнале двоичной «1» — изменяется на противоположную.
В случае дифференциально-фазовой модуляции (DPSK) фаза текущего колебания изменяется не по отношению к опорному колебанию, а то отношение к фазе предыдущей посылки.
Для увеличения скорости информационного потока широко применяется многопозиционная фазовая модуляция с 4, 8 и 16 значениями сдвига фаз. При 4-позиционной модуляции последовательность бит объединяются по два разряда (в дибиты) используют разности фаз соседних посылок 0º, 90º, 180º, 270º .
При 8-позиционной модуляции поток делят по 3 бита (трибиты), а при 16-позиционной по четыре бита (квадрабиты). Фазовые углы между векторами в первом случае отличаются уже на 45º, во втором – на 22,5º.
Фазовые диаграммы частот называют сигнальным созвездием. Для получения модулированных колебаний с числом сдвига фаз сигнала больше двух используются два сигнала сдвинутых на 90 0 , т.е. находящиеся в квадратуре. В этом случае говорят о квадратурной фазовой модуляции QPSK (Quadrature Phase Shift Keying).
Информационная скорость при многопозиционной передаче увеличивается в log m раз, т. е. если m = 4 (четырехпозиционная манипуляция) скорость передачи в 2 раза выше, при m =16 (16-позиционная манипуляция) скорость увеличивается в четыре раза.
Квадратурная амплитудная модуляция QAM (Quadrature Amplitude Modulation) – информационный сигнал кодирует изменение амплитуды и фазы несущего сигнала.
Одновременно используется два гармонические колебания, сдвинутые по фазе на 90 0 .
В передатчике одна из составляющих синфазна несущей частоты, вторая находится в квадратуре по отношении к колебанию. Иными словами есть косинусная и синусная (квадратурная) несущие. При такой модуляции состояния несущего сигнала можно описать различными амплитудами и фазами.
На рис.1.13 показана четырехуровневая модуляция несущей.
На плоскости процесс кодирования можно представить, отложив в декартовой системе по оси ординат амплитуды синфазного колебания, а по оси абсцисс — амплитуды квадратурной составляющей. В результате получится, что каждому варианту моделирующих амплитуд, соответствует определенная точка на сигнальной плоскости. Если теперь цифровой информационный поток разбить на блоки фиксированной длины и присвоить каждому значению битовой последовательности определенную амплитуду этих составляющих с учетом знака, получим однозначное соответствие между сигнальными точками на плоскости и входной битовой последовательностью. Графически это изображается в виде так называемого сигнального созвездия. Соответствие между группами бит и точками созвездия выбирается таким образом, что бы соседние точки отличались минимальным количеством бит, причем именно старшими разрядами. Метод кодирования QAM8 характеризует восьмью возможными битовыми комбинациями.
На рис.1.14 показано зеркальное созвездие, а таблица 1.9 определяет состояния при таком кодировании.
Амплитуда | Фаза | Битовая комбинация |
На рис.1.15 показано зеркальное созвездие при кодировании QAM – 16
Решетчатая модуляции TCM (Trellis Coded Modulation) – аналогична QAM, однако в передаваемый сигнал включается дополнительный бит для коррекции ошибок.
Амплитудно-фазовая модуляция с подавлением несущей и передачей одной боковой полосы CAP (Carrier less Amplitude and Phase Modulation)основана на том, что передача двух боковых полос модулированного сигнала в информационном смысле является избыточной. Осуществляя передачу информации с использованием одной боковой полосы, можно более эффективно использовать мощность сигнала и полосу канала связи. При формировании САР-сигналов на передающей стороне перед суммированием в модуляторе синфазная и квадратурная составляющая подвергается дополнительной фильтрации. Демодулирование САР-сигналов на приемной стороне осуществляется, выполняя предварительное восстановление несущей. Это адаптивная форма кода QAM. Этот метод позволяет корректировать значения символов, учитывая состояние линии (например, шум) в начале соединения.
Способ многочастотной передачи DMT (Discrete multi-tone modulation) использует одновременную передачу QAM-сигналов в различных частотных полосах. Весь частотный диапазон делится на несколько участков фиксированной ширины. Каждый из этих участков используется для организации независимого канала передачи данных. Передатчик, учитывая уровень помех в каждом из участков, выбирает схему модуляции. Если участок имеет малый уровень шумов, применяется алгоритм с большим числом позиций, например, QAM-64. На более зашумленных участках применяются более простые алгоритмы, например, QPSK. При передаче данных информация распределяется между каналами пропорционально их пропускной способности.
Метод DMT оговорен в стандарте Т1.413, разработанном Американским Национальным институтом стандартизации ANSI (American National Standards Institute), в соответствии с чем в канале заданы 256 подканалов, полоса пропускания каждого подканала равна 4,3125 кГц. Каждый подканал независимо модулируется с помощью метода дискретной модуляции QAM. Сигнал передается с помощью постоянного тока при ширине полосы пропускания 1,104 МГц; теоретическая пропускная способность для данных с полосой пропускания 1,104 МГц равна 16,384 Мбит/с. Метод DMT был принят комитетом ANSI как стандарт кодирования для линий связи T1 и используется в системах передачи сигналов по каналам ADSL.
Мультиплексирование с разделением по ортогональным частотам OFDM (Orthogonal Frequency Division Multiplexing) – частный случай способа передачи DMT. Суть способа OFDM заключается в том, что поток передаваемых данных распределяется по множеству частотных подканалов и передача ведется параллельно по всем этим подканалам. Высокая скорость передачи достигается за счет такой одновременной передачи. Для экономии использования всей полосы канала, разделенного на подканалы, желательно как можно более плотно расположить подканалы. В сетях диапазон частот 5,2 ГГц разбит на 12 неперекрывающихся каналов с шириной полосы 20 МГц. Каждый из каналов разбит на 64 подканала с полосой 912,5 кГц. Для передачи данных используются 48 подканалов. Четыре служат для передачи опорных колебаний, а по 6 подканалов справа и слева выполняют функции защитных полос. В любом из каналов можно выполнить передачу со скоростью 6, 9, 12, 18, 24, 36, 48 или 54 Мбит/с. Это определяется выбранным способом фазовой или амплитудно-фазовой модуляции при BPSK – 6 Мбит/с, при QPSK – 12 Мбит/с, при QAM – 16 – 24 Мбит/с, при QA_-64 – 54Мбит/с.
Аналогово-цифровая модуляция используется для преобразования аналоговых сигналов в цифровую форму, пригодную для передачи по цифровых каналах связи (DS – цифровой сервис).
Различают следующие виды такой модуляции:
1. Дельта – модуляция DM (delta modulation) – аналоговый сигнал представляется последовательностью битов, значения которых определяются изменением уровня аналогового сигнала по сравнению с предыдущим значением.
- Амплитудно-импульсная модуляция PAM (Pulse amplitude modulation) – величина аналогового сигнала представляется в виде, пропорциональном амплитуде несущего импульса. В сущности, амплитудно-импульсная модуляция делит исходный аналоговый сигнал на дискретные последовательности (значения) сигнала.
- Кодоимпульсная модуляция PCM (Pulse Code Modulation) – исходный аналоговый сигнал преобразуемый в непрерывный поток бит, чаще всего 8-битовое представление.
- Адаптивная дифференциальная кодоимпульсная модуляция ADPCM (adaptive differential pulse code modulation) – амплитуда аналогового сигнала представляется 4 разрядным кодом.
- Модуляция с изменением длительности PDM (pulse duration modulation) – аналоговый сигнал представляет изменения длительности (ширины) дискретного сигнала.
- Фазоимпульсная модуляция PPM (Pulse position modulation) – аналоговый сигнал представляется изменением времени (фазы) дискретного импульса.
Источник
Способы модуляции при передач
Лет 15 тому назад один из бывших сотрудников ведущего европейского поставщика оборудования связи (Ericsson) рассказывал мне, как они поставляли систему радиодоступа DECT в одну из российских «электросвязей». Когда шведы приехали подписывать контракт, то главный инженер российского оператора во время церемонии подписания вдруг произнёс: «Что-то мне кажется, вы нас обманываете – как это можно голос в цифре передавать, да ещё по воздуху?». Немая сцена…
Вот и попробуем разобраться, как «голос преобразуется в цифру».
Методы модуляции аналоговых сигналов
Любой аналоговый сигнал, например, электрический ток из микрофона, при передаче по цифровым каналам связи нужно, как говорят, «оцифровать». То есть, выполнить цифровую модуляцию. Можно, конечно, и в аналоговом виде сигнал передавать, но с середины прошлого века так уже никто не делает – это чревато высокими затратами и очень низким качеством связи.
Для оцифровки аналоговый сигнал А (рис. 1) нужно подвергнуть модуляции. Например, существует Импульсно-Амплитудная Модуляция (ИАМ), по-английски PAM (Pulse Amplitude Modulation), что показано на графике В. По сути, это просто выборка (дискретизация) значений амплитуды сигнала через равные промежутки времени. В результате сигнал все равно остаётся аналоговым, только представленным в виде «столбиков», высота которых представляет собой амплитуду сигнала в момент выборки.
Теперь по одному проводу можно передавать несколько сигналов, если в промежутке между двумя выборками сигнала А передавать выборки от других сигналов.
Другой вид модуляции — широтно- импульсная модуляция (ШИМ), или PWM — Pulse Width Modulation, что мы видим на графике С. Здесь амплитуда А сигнала в каждый момент выборки представлена длительностью («шириной») импульсов, амплитуда которых всегда постоянная.
На графике D показана фазовая модуляция, или PPM — Pulse Position Modulation. Дословно сиё переводится как «модуляция по положению импульса». Фактически, амплитуда сигнала А здесь представлена фазой (сдвигом) импульсов равной амплитуды относительно момента дискретизации исходного сигнала А.
Ну и наконец, есть ещё импульсно-кодовая модуляция (ИКМ), которая показана на графике Е. По-английски она называется PСM (Pulse Сode Modulation).
Вот эта модуляция нас и будет больше всего интересовать, поскольку она и есть цифровая!
Рис. 1. Виды модуляции аналогового сигнала.
Заметим, что и цифровой сигнал тоже можно различным образом модулировать.
Преобразование аналогового сигнала в цифровой
Чтобы преобразовать аналоговой сигнала в цифровую форму, нужно его, во-первых, сделать выборку его величины (амплитуды) через равные промежутки времени. Это процесс называется «семплированием» (от слова sample – «образец») и показан на рис. 2.
Рис. 2. Преобразование аналогового сигнала в цифровой
Во-вторых, нужно сделать квантование, т.е. измерение величины амплитуды сигнала в моменты выборки и округление результата измерения до ближайшего значения ступени квантования.
И в-третьих, полученные кванты нужно представить в цифровой форме, т.е. закодировать тем или иным способом. На рисунке 2 показано кодирование в виде трёхразрядного (трёхбитового) двоичного числа. Вообще, этого очень мало, на практике обычно применяют 8-битное кодирование. Поэтому, как видим, полученный результат довольно сильно отличается от формы исходного сигнала.
Что нужно, чтобы повысить точность, т.е. соответствие полученных значений исходному сигналу? Очевидно, нужно увеличить частоту семплирования. То есть, чаще производить выборку. Здесь можно воспользоваться теоремой, у которой аж целых три автора: два зарубежных, Найквист и Шэннон, и наш, российский Котельников. Поэтому в России эту теорему называют теоремой Котельникова, а за рубежом – Найквиста-Шэннона. И гласит эта теорема следующее: «сигнал, спектр которого ограничен частотой среза (fср), может быть восстановлен без потерь, если частота дискретизации составляет не менее fд = 2fср». То есть, берём самую высокую гармонику сигнала (как известно, сигнал любой практически формы можно разложить на сумму синусоидальных гармоник с различными амплитудами), и умножаем её на два. После этого, можем считать, что мы адекватно преобразовали аналоговый сигнал в цифровую форму. Ну, если не считать т.н. «шумов квантования», о которых речь немного позже.
Например, если частотный диапазон телефонного сигнала ограничен частотой 3400 Гц (а он именно такой частотой и ограничен, на входе ставят частотный фильтр), то частота выборки (семплирования) должна быть не менее 6800 Гц. На практике обычно делают семплирование с частотой 8000 Гц.
И ещё, как уже отмечалось, нужно повысить разрядность кодирования, то есть кодировать выборки не трёхразрядным двоичным числом, а восьмиразрядным (байтом).
Восстановление формы исходного аналогового сигнала на приёмном конце линии связи
Затем, полученный цифровой сигнал передают тем или иным способом по линии связи. Как это делается, нас пока не интересует. Однако, на приёмном конце линии связи форму сигнала нужно восстановить. Вот что при этом получается (рис. 3).
Рис. 3. Восстановление исходной аналогового формы сигнала.
Как видим, при трёхразрядном кодировании (семь уровней квантования) исходную форму сигнала удаётся восстановить лишь приблизительно. На рис. 3. даже на глаз видны существенные различия полученного сигнала от исходного, хотя общая форма сигнала похожа. Например, если исходный аналоговый сигнал представляет речь, то собеседник на приёмном конце при этом сможет понять, о чем его визави говорит, но тембр голоса может сильно измениться, и возможно, некоторые слова придётся повторять.
Шумы квантования
При квантовании аналогового сигнала, как показано на рис.1, реальное значение сигнала заменяется ближайшим ему уровней квантования. При этом, реальная волнообразная форма аналогового сигнала заменяется «лесенкой», ступени которой соответствуют уровням квантования.
Рис. 4. Аппроксимация аналогового сигнала уровнями квантования.
Ясно, что такая «пилообразная» кривая отличается от исходной формы аналогового сигнала. Различие (ошибка) между аналоговым сигналом и его ступенчатой аппроксимацией и есть шумы квантования.
Чем больше уровней квантования, тем точнее аппроксимация аналогового сигнала при квантовании, что видно на рис. 5.
Рис. 5. Точность аппроксимации повышается с увеличением числа уровней квантования.
Импульсно-кодовая модуляция ИКМ (PCM, Pulse Code Modulation)
Импульсно-кодовая модуляция – и есть цифровизация аналогового сигнала, то есть, представление аналогового сигнала, вернее его квантованных значений, в цифровой форме. По линии связи при этом передаётся последовательность нолей и единиц (битов), которая представляет собой двоичное число, равное значению уровня квантования в момент квантования.
Рис. 6. Принцип импульсно-кодовой модуляции ИКМ (источник: Н.Н. Слепов. Современные технологии цифровых оптоволоконных сетей связи, 2000 г.).
Квантование, в соответствии с теоремой Котельникова (или Шеннона-Найквиста), производится с частотой 8000 Гц, то есть период квантования составляет 125 мкс. Длительность передачи 8-битового кода выборки квантования составляет 3,91 мкс.
Почему именно 8000 Гц? Потому, что частота среза в телефонном канале составляет 3400 Гц. С «запасом прочности» величина частота среза выбрана равной 4000 Гц, поэтому частота дискретизации выбрана 8000 Гц.
Методы двоичного кодирования.
Двоичное кодирование сигнала для передачи его по каналам связи производится различными методами.
Рис. 7. Методы двоичного кодирования.
- Самый простой метод кодирования — униполярный код NRZ (Non-Return to Zero), «без возврата к нулю». Единица представлена высоким уровнем сигнала, тока или напряжения, ноль – нет тока, либо напряжения. Впрочем, может быть и наоборот, это непринципиально.
- Биполярный код NRZ (Non-Return to Zero), «без возврата к нулю». Единица представлена положительным значением тока в цепи, ноль – отрицательным.
- Униполярный код RZ (Return to Zero) «с возвратом к нулю». После обозначения единицы, сигнал в течение периода такта возвращается к нулевому значению сигнала (не ноля, как числа, а лишь величины модулирующего сигнала).
- Биполярный код RZ (Return to Zero) «с возвратом к нулю». То же самое, только две идущие подряд единицы обозначаются разнополярными импульсами с чередованием. Ноль обозначается отсутствием тока или напряжения.
- И наконец, самый экстравагантный код – «Манчестерский» (Manchester Code). Читателю предлагается самому разобраться в методе кодирования по рисунку.
Дилемма между сильным и слабым сигналом
Метод ИКМ не лишен недостатков. Кроме шумов квантования, есть ещё и проблема возрастания ошибок квантования, если сигнал имеет низкую амплитуду. В случае телефонного разговора, это будет означать, что если собеседник будет говорить негромко, то его речь может стать совсем неразборчивой.
Рис. 8. Линейное и нелинейное кодирование.
Это может произойти при линейном кодировании, когда все уровни квантования имеют одинаковый шаг по амплитуде сигнала. На рис. 8 видно, что при линейном квантовании слабый сигнал сильно искажается.
Поэтому применяется нелинейное кодирование (компандирование) сигнала.
Компандирование: А-закон и μ-закон
Существует два метода компандирования: А-закон (используется в Европе и России) и μ-закон (используется в Северной Америке и Японии).
А-закон командирования выглядит, как показано на рис. 9, и выражается следующей математической формулой:
Рис. 9. А-закон компандирования
В правой части рис. 9 показана кривая А-закона только для положительных значений входного сигнала. Такая же кривая имеется для отрицательных значений, которая будет «смотреть» вниз.
По вертикальной оси отложено 128 ступеней квантования. Если учесть нижнюю часть кривой, ступеней будет 256. В двоичной форме число 256 можно представить байтом из 8 разрядов. Принцип кодирования показан в таблице в левой части рисунка 9.
При 256 ступенях квантования можно обеспечить довольно хорошее соответствие квантованных значений сигнала его исходной кривой.
Компандирование сигнала и формула μ-закона показано на рисунке 10. Принципиальных отличий от А-закона здесь нет.
Рис. 10. Компандирование по μ-закону.
При восстановлении аналогового сигнала из цифровой формы на стороне приёма выполняется обратное компандирование, таким образом, удаётся получить довольно хорошее соответствие полученного сигнала исходному за счёт двух факторов:
- Достаточного количества уровней квантования – 256 (2 8 )
- Применения компандирования, которое обеспечивает достаточно хорошее качество передачи сигналов малой амплитуды.
В следующей статье Ликбеза рассмотрим методы формирования цифровых трактов.
— Ты прошёл через мой беспроводной цифровой поток и промодулировался!
Источник