Проверка и маркировка электрических цепей
Для проверки целостности жил проводов и кабелей используется источник тока и прибор-индикатор, сигнализирующий о замыкании цепи. Во время проверки определяется правильность соединений цепей, отсутствие обрывов и замыкания проводов между собой или на землю и проводится маркировка участков цепей.
При маркировке целых участков цепи, не содержащих никаких элементов электроаппаратов и состоящих только из токопроводящей жилы, обоим концам участка (начало и конец) жилы должно быть присвоено одинаковое маркировочное обозначение. Проверка целостности жил осуществляется различными способами, которые можно объединить в две группы.
Рис. 43. Схемы проверки электрических цепей:
а, б — способами первой группы; в, г — способами второй группы; а — с помощью светозвукового сигнального устройства; б — с помощью микротелефонных трубок; в — с шифрованием сопротивлениями, г — с шифрованием потенциалом.
Щ1, Щ2 — щупы; Зв — звонок; ЛC — сигнальная лампа; Б — сухой элемент; 3 — заземление; МО — металлическая оболочка; КЗ — концевая заделка; МТ — микротелефонная трубка; Ш — шифратор; R1 — R19 — потенциометры; R0 — установочный резистор; О — неметаллическая оболочка; Rд — добавочный резистор.
В первую группу входят способы, при которых жилы в процессе проверки ничем не отличаются друг от друга и маркировка на них наносится произвольно по мере отыскания соответствующих начал и концов (рис. 43, а, б). Для способов первой группы требуется простое оборудование. Однако проверка этим способом отличается трудоемкостью и производится, как правило, двумя рабочими.
Вторая группа способов проверки основана на предварительном шифровании жил, имеющих определенную маркировку на одном из концов потока проводов (рис. 43, в, г). Шифрование жил проводится по какому-либо отличительному признаку по сравнению с другими жилами: по различным сопротивлениям жил, по различным электрическим потенциалам жил (подаваемым от вспомогательного устройства) или по различным направлениям тока в жилах. На втором конце потока проводится дешифрование жил путем опознавания их с помощью того или иного прибора. На концы опознанных жил наносится маркировка, соответствующая их маркировке в начале потока. Вторая группа обеспечивает более высокую производительность работы и позволяет проводить проверку одним рабочим, однако, требует более сложного и дорогого оборудования (в сравнении со способами первой группы).
Все способы определения целостности жил кабелей и проводов предполагают наличие в потоке, по крайней мере, одной исправной цепи, легко опознаваемой на обоих концах потока. Обычно такой цепью служит цепь заземления или металлические оболочки кабелей.
Для маркировки жил кабелей применяют приставку У МЖК, которая представляет собой магазин резисторов и подсоединяется к мегаомметру. Недостатками этого комплекта приборов являются громоздкость и необходимость вращения рукоятки мегаомметра при измерениях.
Для проверки кабелей с небольшим числом жил (например, силовых) применяют мегаомметр без приставок. В этом случае требуется иметь несколько резисторов, номинальные сопротивления которых достаточно велики и резко отличаются от сопротивления жилы кабеля и друг от друга. На одном из концов кабеля жилы заземляются через разные резисторы. Одну из жил заземляют непосредственно. Измеряя сопротивление жил с другого конца кабеля мегаомметром с использованием земли в качестве обратного провода, нетрудно определить их по резко различающимся сопротивлениям (вместо мегаомметра можно использовать переносные измерительные мосты или омметры).
Для оконцевания изоляции жил разделанных проводов и контрольных кабелей и нанесения маркировочных обозначений применяют маркировочные муфты, отрезки поливинилхлоридных трубок, а также наборные оконцеватели из липкой маркировочной ленты. Кабели в целом в зависимости от их назначения маркируют пластмассовыми или алюминиевыми бирками различной формы.
Форма бирки | Марка бирки | Вид кабелей | |
алюминиевой | пластмассовой | ||
Круг | БКА-1 | БКП-1 | Силовые выше 1000 В |
Прямоугольник | БКА-2 | БКП-2 | Силовые до 1000 В |
Овал | БКА-3 | БКП-3 | Контрольные |
Шестигранник | БКА-4 | БКП-4 | КИП и А |
Квадрат | БКА-5 | БКП-5 | Связи |
На маркировочные муфты, оконцеватели и манжеты, а также на оболочки кабелей маркировку наносят несмываемыми чернилами с помощью стеклянных чертежных трубочек.
Для маркировки с использованием микротелефонов применяют переговорное устройство ПУ-71, выпускаемое серийно.
Источник
Тема 1.2. Электрические цепи постоянного тока
Электрические цепи и ее элементы
Электрической цепью постоянного тока называют совокупность устройств и объектов: источников электрической энергии, преобразователей, потребителей, коммутационной, защитной и измерительной аппаратуры, соединительных проводов или линии электропередачи.
Электрические и электромагнитные процессы в этих объектах описываются с помощью понятий об электродвижущей силе (ЭДС — E ), токе ( I ) и напряжении ( U ).
Элементы цепи можно разделить на три группы:
1) элементы, предназначенные для генерирования электроэнергии (источники энергии, источники ЭДС);
2) элементы, преобразующие электроэнергию в другие виды энергии: механическую, тепловую, световую, химическую и т.д. (эти элементы называются приемниками электрической энергии или потребителями);
3) элементы, предназначенные для передачи электрической энергии от источника к приемникам (линии электропередачи, соединительные провода); элементы, обеспечивающие уровень и качество напряжения и т.д.
Источники питания цепи постоянного тока – это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термо- и фотоэлементы и др.
Электрическими приемниками или потребителями постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др. Все электоприемники характеризуются электрическими параметрами, среди которых основные – напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение. По ГОСТ 721-77 напряжение равно 27, 110, 220, 440 В, так же 6, 12, 24, 36 В.
Коммутационная аппаратура служит для подключения потребителей к источникам, то есть для замыкания и размыкания источников электроцепи.
Защитная аппаратура предназначена для размыкания цепи в аварийных ситуациях.
Измерительная аппаратура предназначена для замера тока, напряжения и других электрических величин.
Линии электропередачи используются, когда источники и потребители удалены друг от друга на большие расстояния. Соединительные провода предназначены для соединения между собой зажимов или электродов элементов электрической цепи.
Активные и пассивные элементы
Элемент называется пассивным , если он не может вызывать протекание тока, то есть если он не создает тока или ЭДС. Если собрать несколько пассивных элементов (резисторы, конденсаторы, катушки индуктивности) в электрическую цепь, то ток в цепи не потечет.
Элемент, который создает ЭДС и вызывает протекание тока, называется активным (источники электроэнергии).
Линейные и нелинейные цепи
Электрическая цепь называется линейной , если электрическое сопротивление или другие параметры участков, не зависят от значений и направлений токов и напряжений. Электрические процессы линейной цепи описываются линейными алгебраическими и дифференциальными уравнениями.
Если электрическая цепь содержит хотя бы один нелинейный элемент , то она является нелинейной.
Топологические элементы электрической цепи.
Графическое изображение электрической цепи называется электрической схемой. Электрическая схема включает: узлы, ветви, контуры.
Ветвь – совокупность элементов, соединенных последовательно. По ветви протекает один и тот же ток.
Узел – точка соединения трех или более ветвей.
Контур – совокупность ветвей, при обходе которых осуществляется замкнутый путь.
Простейшая электроцепь имеет один контур с одной ветвью и не имеет узлов. Сложные электроцепи имеют несколько контуров.
Положительные направления тока, напряжения и ЭДС.
Чтобы правильно записать уравнения, описывающие процессы в электрических цепях, и произвести анализ этих процессов, необходимо задать условные положительные направления ЭДС источников питания, тока в элементах или ветвях цепи и напряжения на зажимах элементов цепи или между узлами цепи.
Внутри источника ЭДС постоянного тока положительным является направление ЭДС от отрицательного полюса к положительному полюсу. Это соответствует определению ЭДС как величины, характеризующей способность сторонних сил вызывать электрический ток.
По отношению к источнику ЭДС все элементы цепи составляют внешний участок цепи.
За положительное направление тока в цепи принимают направление, совпадающее с направлением ЭДС. Во внешней цепи положительным является направление от положительного полюса источника к отрицательному полюсу. В электронной теории – направление совпадает с направлением положительно заряженных частиц.
Условным положительным направлением падения напряжения (или просто напряжения) на элементах цепи или между двумя узлами цепи принимают направление, совпадающее с условно положительным направлением тока в этом элементе или в этой ветви. Положительное направление напряжения на зажимах источника ЭДС всегда противоположно положительному направлению ЭДС.
Действительные направления электрических величин, определяемые расчетом, могут совпадать или не совпадать с условными направлениями. При расчетах если определено, что ток, ЭДС и напряжения положительны, то их действительные направления совпадают с условно принятыми положительными направлениями, если отрицательны, то не совпадают.
Основные законы электрической цепи
Условное обозначение параметров в цепях постоянного и переменного тока.
i – переменный ток; I – постоянный ток;
u – переменное напряжение; U – постоянное напряжение;
e – переменная ЭДС; E – постоянная ЭДС;
Источник
Маркировка вторичных цепей: классификация, таблицы, пример
Маркировка – это система условных обозначений, предназначенная для нанесения на провода, схемы, аппараты вторичных устройств и их схемы. Ее выполняют с целью точного опоздания электрических схем, быстрого определения отдельных элементов и удобства пользования. Маркировку выполняют на всех панелях, на которых имеются вторичные цепи, аппараты, жилы контрольных кабелей, сами кабели.
Нормативным документом, на основе которого выполняют маркировку, является Руководящие материалы Минэнерго СССР 10260ТМ-Т1, введенные в действие 1.04.1981г.
Маркировка электрических цепей постоянного тока выполняется цифровыми обозначениями с учетом полярности. Часть цепи положительной полярности отмечается нечетными цифрами, отрицательной — четными.
Участки вторичных цепей, не имеющие постоянной полярности, могут обозначаться четными и нечетными цифрами.
Числа, использующиеся при маркировке вторичных цепей, делят на сотни (одна группа 1 — 99, другая – 101 — 199 и т.п.). При недостаточной основной нумерации используется дополнительная четырехзначная, с присоединением цифры впереди основной.
Интересное видео о маркировке цепей смотрите ниже:
Чаще всего в схемах можно встретить следующую маркировку цепей:
1 – «положительного» питания;
2 – «отрицательного» питания;
3 – 19 (обычно используется 3) – цепи включения;
20 – 29 – цепи катушек токовых реле.
Иногда, перед цифрой ставят букву, в основном такая маркировка используется для цепей определенного назначения, к примеру:
Р – используют при обозначении цепей УРОВ;
U – цепи связи;
T – цепи телемеханики.
Таблица распределения чисел для маркировки цепей
Обозначение цепей переменного тока обычно выполняется порядковыми числами, с добавлением впереди буквенного обозначения фазы или нейтрали цепи (А, В, С, N): N1 – N99; A1 – A99 и т.д.
Буквенное обозначение можно не использовать, если не требуется точное свидетельство фазы.
Таблица распределения букв для маркировки цепей
Маркировка цепей трансформаторов тока (токовые цепи)
Числа, использующиеся для маркировки токовых цепей, разбивают тоже на группы. Так, первая группа маркируется N (A,B,C,) 4**, для маркировки используют номера с 401-499. Следующая значимая цифра определяет номер конкретного трансформатора тока, третья цифра выбирается, исходя из участка цепи от одной точки к другой.
К примеру, обозначение цепей трансформаторов тока типа ТТ имеет следующий вид: 1TT: А 413 – 420 и т.д.
Если монтажная схема конструктивно включает более девяти трансформаторов тока, то используется следующий тип маркировки A (B,C,N) 5* или: 10ТТ: А 501 – 509.
Описанные способы маркировки схем используются для отдельной монтажной единицы, при этом их принцип может повторяться на различных фидерах, и единообразие в обозначениях схем – приветствуется.
Маркировка цепей трансформаторов напряжения (цепи напряжения)
Маркировка цепей ТН выполняют в виде А 6**. Для обозначения дополнительных обмоток используют маркеры: Н, К, Ф, И. Следующая цифра в обозначении ТН выбирается, исходя из его номера в схеме. Третья идентифицирует участок схемы от одной точки до другой. К примеру: 1TН (ТН 1 СШ): А 611 – 617.
Буквенное обозначение цепей напряжения, подсоединяемые через блок-контакты коммутационных аппаратов и реле, имеет следующий вид: А (В, С, N, Н, К, Ф, И) 7**.
О цветовой маркировке проводов можно почитать в отдельной статье.
Источник