Способы контроля состояния трансформаторного масла

Физико-химические методы оценки состояния силовых трансформаторов в условиях эксплуатации. Показатели состояния трансформаторного масла.

При эксплуатации силовых трансформаторов трансформаторное масло не только выполняет функции диэлектрика и охлаждающей среды, но и является диагностической средой. Большинство развивающихся дефектов может быть определено посредством своевременного контроля состояния трансформаторного масла. Это такие дефекты, как: локальные перегревы, разряды в масле, искрение, загрязнение и увлажнение изоляции, попадание воздуха, окисление и старение самого масла и твердой изоляции. Поэтому совершенствование методов оценки различных показателей трансформаторного масла является весьма актуальной задачей.

Значительная доля существующих методов оценки состояния трансформаторного масла основана на контроле его физико-химических показателей. Часть из них позволяет оценивать состояние изоляции трансформаторов в процессе их эксплуатации.

По существующим требованиям в процессе эксплуатации силовых трансформаторов предусмотрено измерение следующих показателей масла: пробивное напряжение, содержание механических примесей, тангенс угла диэлектрических потерь масла, температура вспышки в закрытом тигле, кислотное число, содержание водорастворимых кислот и щелочей, влагосодержание, содержание антиокислительной присадки, газосодержание масла, хроматографический анализ растворенных газов, содержание фурановых производных.

Кислотное число — это количество едкого калия (КОН), выраженного в миллиграммах, которое необходимо для нейтрализации свободных кислот в 1 г масла. Данный показатель свидетельствует о содержании в масле любых кислых веществ. Его увеличение свидетельствует об окислении масла, а это может вызывать коррозию конструкционных элементов, развитие коллоидно-дисперсных процессов и в конечном итоге ведет к снижению электрической прочности масла. Кислоты также могут способствовать увеличению поглощения воды бумажной изоляцией.

Содержание водорастворимых кислот и щелочей свидетельствует о качестве масла. Они могут появиться как в процессе изготовления масла, так и образоваться в результате его окисления в процессе эксплуатации. Этот показатель также способствует развитию коррозии и старению бумажной изоляции.

Влагосодержание, как показатель состояния масла контролируется в процессе эксплуатации. Увеличение влагосодержания масла возможно при попадании атмосферной влаги в масло из-за неисправности или отсутствия осушителей у трансформаторов со свободным дыханием, а также из-за засасывания влажного воздуха или дождевой воды в масло у трансформаторов с принудительной системой охлаждения при ее негерметичности. Увеличение влагосодержания трансформаторного масла приводит к снижению электрической прочности масла и маслобарьерной изоляции трансформатора в целом.

Газосодержание масла в процессе эксплуатации также контролируется в трансформаторах с пленочной защитой масла от окисления для оценки его герметичности. Повышение газосодержания масла способствует более интенсивному его окислению и ухудшению электрической прочности изоляции активной части трансформатора.

Хроматографический анализ газов, растворенных в масле, позволяет с высокой степенью достоверности диагностировать развивающиеся дефекты в трансформаторе, связанные с электрическими разрядами в изоляции и локальными перегревами. Так как при появлении местных нагревов или электрических разрядов масло и соприкасающаяся бумажная изоляция разлагаются, а образующиеся газообразные продукты растворяются в масле.

Содержание фурановых производных в трансформаторном масле косвенно может свидетельствовать о деструкции бумажной изоляции. Термолиз, окисление и гидролиз изоляции вызывают частичное разрушение макромолекул целлюлозы, приводят к образованию компонентов фуранового ряда, которые выделяются в трансформаторное масло.

Такие физико-химические показатели, как кислотное число, содержание водорастворимых кислот и щелочей, влагосодержание и газосодержание масла являются традиционными в практике эксплуатации силовых трансформаторов на протяжении многих лет. Применение хроматографического анализа газов, растворенных в масле, и показателей оценки состояния бумажной изоляции силовых трансформаторов в эксплуатации началось сравнительно недавно. Тем не менее, накоплен достаточно большой опыт применения хроматографического анализа газов, растворенных в масле силовых трансформаторов напряжением 110-750 кВ, для выявления дефектов в эксплуатации. Накопленный опыт позволяет сформулировать совокупность диагностических признаков, имеющих высокую достоверность, и определить вид и характер выявляемых ими дефектов.

С помощью хроматографического анализа газов в силовых трансформаторах можно обнаружить две группы дефектов:

  • перегревы токоведущих соединений и элементов конструкции остова;
  • электрические разряды в масле.

Для этого определяются концентрации семи газов: водорода (Н2), метана (СH4), ацетилена (С2Н2), этилена (С2H4), этана (С2Н6), оксида углерода (СО) и диоксида углерода (СО2). Используется подразделение газов на основные (ключевые) и характерные (сопутствующие).

При перегревах токоведущих соединений и элементов конструкции остова трансформатора основным газом является С2Н4 — в случае нагрева масла и бумажно-масляной изоляции свыше +500°С и С2Н2 — при дуговом разряде. Характерными газами в обоих случаях являются Н2, СH4, и С2Н6.

При частичных разрядах в масле основным газом является Н2, характерными газами с малым содержанием — СН4 и С2H2.

При искровых и дуговых разрядах основными газами являются Н2 или С2H2, характерными газами с любым содержанием — СН4 и С2Н4.

При перегревах твердой изоляции основным газом является СО2. Следует также отметить, что сопутствующим показателем деструкции целлюлозной изоляции трансформатора является рост содержания оксида и диоксида углерода, растворенных в трансформаторном масле. Наличие суммарной концентрации CO и СО2 более 1% может свидетельствовать о деградации целлюлозной изоляции.

Нужно отметить, что при анализе состава и концентраций растворенных в масле газов в целях диагностики эксплуатационного состояния силовых трансформаторов необходимо учитывать факторы, вызывающие их изменения.

К эксплуатационным факторам, вызывающим увеличение концентрации растворенных в масле газов, относятся:

  • остаточные концентрации газов проникших во время ремонта трансформатора, если не была проведена дегазация масла;
  • увеличение нагрузки трансформатора;
  • доливка маслом, бывшим в эксплуатации и содержащим растворенные газы;
  • проведение сварочных работ на баке и др.

К эксплуатационным факторам, вызывающим уменьшение концентрации растворенных в масле газов трансформаторов, относятся:

  • уменьшение нагрузки трансформатора;
  • дегазация масла;
  • доливка дегазированным маслом;
  • замена силикагеля и др.

Для диагностики развивающихся дефектов в силовых трансформаторах используются следующие основные критерии:

  • критерий граничных концентраций;
  • критерий скорости нарастания газов;
  • критерий отношения пар характерных газов.

Суть методики критериев заключается в том, что выход значений параметров за установленные границы следует рассматривать как признак наличия дефектов, которые могут привести к отказу оборудования. Особенность метода хроматографического анализа газов заключается в том, что нормативно устанавливаются только граничные концентрации газов, достижение которых свидетельствует лишь о возможности развития дефектов в трансформаторе. Такие трансформаторы следует брать под особый контроль с учащенным отбором проб масла и проведением хроматографического анализа.

Читайте также:  Колофорт способ применения до еды или после

Критерий граничных концентраций позволяет выделить из общего количества трансформаторного парка трансформаторы с возможными развивающимися дефектами, а степень опасности развития дефекта определяется по относительной скорости нарастания концентрации газа (газов). Если относительная скорость нарастания концентрации газа (газов) превышает 10% в месяц, то дефект считается быстроразвивающимся.

Характер развивающегося дефекта по результатам хроматографического анализа газов определяется по критериальным отношениям концентраций различных пар газов. Принято различать дефекты теплового и электрического характера. К первым относятся: возникновение короткозамкнутых контуров, повышенные нагревы изоляции, контактов, отводов, шпилек и других металлических конструкций остова и бака трансформатора. К дефектам электрического характера относятся разряды различной интенсивности. Естественно, развитие дефекта в трансформаторе может иметь смешанный характер. Анализ существующих методик оценки характера развивающихся дефектов (теплового или электрического характера) по результатам хроматографического анализа показывает, что в них имеются значительные различия как по виду, так и по количеству используемых отношений пар газов. Ниже приведены используемые отношения пар характерных газов основных существующих методик: Дорненбурга (Dornenburg`s method), Мюллера (Mailer’s method), Роджерса (CEGB/Rogers Ratios), МЭК (IEC 60599), ВЭИ.

Методика Дорненбурга: CH2/H2, C2H2/C2H4, C2H6/C2H2, C2H2/CH4
Методика Мюллера: CH4/H2, C2H4/C2H6, CO/CO2, C2H6/C2H2
Методика Роджерса: CH4/H2, C2H2/C2H4, C2H4/C2H6, C2H6/CH4
Методика МЭК: CH4/H2, C2H2/C2H4, C2H4/C2H6
Методика ВЭИ: CH4/H2, C2H4/CH4, C2H6/CH4, C2H2/C2H4, C2H6/C2H2, C2H4/C2H6

Получаемые по отношению концентраций газов признаки имеют достаточно условную диагностическую ценность, так как они ориентированы на определение характера развивающегося дефекта после превышения установленных граничных концентраций хотя бы у одного углеводородного газа или водорода. Статистический анализ показал, что наибольшую диагностическую ценность имеет методика МЭК (ГЕС 60599), которая и рекомендована к применению.

Результаты хроматографического анализа растворенных газов в масле силового трансформатора являются показаниями для проведения внеочередных измерений сопротивления изоляции обмоток, тангенса угла диэлектрических потерь обмоток, сопротивления обмоток постоянному току, потерь холостого хода, тепловизионного контроля поверхностей бака трансформатора и системы охлаждения, а также проведения хроматографического анализа растворенных газов в масле бака контактора. По совокупности результатов измерений принимается решение о проведении дальнейших мероприятий с данным трансформатором (оставить трансформатор в работе с учащенным контролем, провести дегазацию масла, вывести трансформатор в ремонт и проч.).

Источник: © Львов М.Ю., Кутлер П.П. Физико-химические методы в практике оценки состояния силовых трансформаторов в условиях эксплуатации: Учебно-методическое пособие. — М.: ИУЭ ГУУ, ВИПК-энерго, ИПК госслужбы, 2003. — 20 с

Источник

ЭКСПЛУАТАЦИОННЫЙ КОНТРОЛЬ ТРАНСФОРМАТОРНОГО МАСЛА И ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ЕГО КАЧЕСТВУ

6.1. Требования к качеству эксплуатационных трансформаторных масел в зависимости от типа оборудования, класса напряжения и мощности, методы испытания и меры, принимаемые в случае превышения предельно допустимых значений некоторых показателей качества масел приведены в табл. 5.

Требования к качеству эксплуатационных трансформаторных масел

При наличии следов механических примесей обработка (фильтрация) масла фильтрами тонкой очистки масла (фильтр-пресс ФП; ФОСН; ФГН и др.) или установками (УВМ; ПСМ), оборудованными указанными фильтрами, по п. 7.10

Входит в объем сокращенного анализа

3. Кислотное число, мг КОН/г масла

Силовые трансформаторы свыше 630 кВ · А, измерительные трансформаторы 110 кВ и выше, маслонаполненные вводы

6. Тангенс угла диэлектрических потерь, %, при 90 °С

Проба масла перед определением дополнительно не обрабатывается. (Периодичность испытания см. п. 6.3, а также при смешении масел). Повышение обусловлено появлением в масле коллоидных частиц (мыл, следов растворимого шлама) и загрязнением масла водой

Показатель качества масла Наименование нормативно-технического документа Место проведения испытания (П — производство, Л — лаборатория) Группа оборудования Предельно допустимое значение показателя качества масла Меры, принимаемые в случае превышения значения показателя выше предельно допустимого Примечание
1. Пробивное напряжение, кВ ГОСТ 6581-75 П и Л Трансформаторы, аппараты, вводы напряжением:
до 15 кВ вкл. 20 Обработка вакуумным сепаратором ПСМ по п. 7.9 или цеолитом по п. 8.2 Входит в объем сокращенного анализа (периодичность сокращенного анализа см. п. 6.3)
свыше 15 кВ до 35 кВ вкл. 25 То же Снижение Uпробусловлено наличием воды и накоплением загрязнений в масле
от 60 кВ до 150 кВ вкл. 35 -«-
от 220 кВ до 500 кВ вкл. 45 Обработка вакуумной установкой УВМ по п. 8.3 или неолитом по п. 8.2
750 кВ 55 То же
1150 кВ 65 -«-
2. Содержание механических примесей, % массы (г/т) П Электрооборудование до 750 кВ вкл. Отсутствие
— визуально РТМ 34-70-653-83 Л Силовые трансформаторы 1150 кВ вкл. 0,0015 (15)
0,1 Замена в ТСФ или АФ адсорбента, регенерация масла по п. 10.2 Входит в объем сокращенного анализа (ТСФ — термосифонные фильтры, АФ — адсорбционные фильтры)
0,25 Регенерация масла крупнопористыми адсорбентами по п. 10или замена на свежее масло См. примечание 1 табл. 5
4. Содержание водорастворимых кислот, мг КОН/г масла Приложение 1настоящих Методических указаний П и Л То же 0,014 (0,03 для негерметичных вводов до 500 кВ вкл.) Замена адсорбента в ТСФ или АФ, регенерация масла по п. 10 Входит в объем сокращенного анализа. Повышение КЧ и ВРК обусловлено процессом окислительного старения масла
5. Температура вспышки в закрытом тигле (ТВЗТ), °С ГОСТ 6356-75 П и Л Силовые трансформаторы выше 530 кВ · А, измерительные трансформаторы 110 кВ и выше, маслонаполненные вводы Снижение не более чем на 6 °С в сравнении с предыдущим анализом Выявление и устранение причины (дефекта оборудования). Проведение хроматографического анализа. Если ТВЗТ ниже 125 °С, то вакуумная обработка масла установкой УВМ по п. 8.3 до ТВЗТ не ниже 130 °С. Если ТВЗТ выше 125 °С и в процессе дальнейшей эксплуатации не снижается, то нет необходимости в обработке масла Входит в объем сокращенного анализа (см. примечание 2 к данной табл.). Снижение ТВЗТ обусловлено разложением масла в результате местных перегревов и электрических разрядов
Силовые, измерительные трансформаторы, вводы напряжением: Регенерация крупнопористым адсорбентом по п. 10.2замена адсорбента в ТСФ или АФ. (Замена масла на свежее)
110 — 150 кВ вкл. 15
220 — 500 кВ вкл. 10
750 кВ 5
1150 кВ 4
7. Влагосодержание, % массы (г/т) ГОСТ 7822-75 Л Для трансформаторов с азотной и пленочной защитой 0,002 (20) Обработка цеолитом по п. 8.2 или вакуумной установкой УВМ по п. 8.3 Периодичность проведения такая же, как и у сокращенного анализа масла.
ГОСТ 1547-84 П Для трансформаторов без специальных средств защиты с системой охлаждения М и Д Отсутствие (Качественно) Обработка цеолитом по п. 8.2 или вакуумным сепаратором ПСМ по п. 7.9 Основные причины увлажнения масла — образование реакционной воды и поглощение влаги из окружающей среды при «дыхании» оборудования
8. Газосодержание, % объема Инструкция завода-изготовителя оборудования П и Л Для трансформаторов с пленочной защитой 2 Дегазация масла с помощью установки УВМ по п. 8.3 Периодичность проведения такая же, как и сокращенного анализа масла. Заводы-изготовители рекомендуют определять хроматографическим методом или адсорбциометрами на установках УВМ. Повышение газосодержания обуславливается нарушением герметичности пленочной защиты или наличием дефектов оборудования
9. Растворимый шлам (потенциальный осадок) Приложение 2настоящих Методических указаний Л Силовые трансформаторы 220 кВ и выше при КЧ свыше 0,10 мг КОН/г масла Отсутствие (отсутствием считается содержание менее 0,01 % массы) Регенерация масла по п. 10.2 с последующей заменой адсорбента в ТСФ и АФ, введение присадки ионол в количестве 0,3 % массы п. 9.6.4 Выполнять с периодичностью сокращенного анализа масла. Появление шлама обусловлено глубоким старением масла
10. Определение содержания антиокислительной присадки ионол Приложение 3настоящих Методических указаний Л В основном негерметичных трансформаторов 110 кВ и выше, а также для оборудования с вместимостью маслосистемы 10 т и более Не менее 0,1 % массы Введение ионола по п. 9.6.4 в количестве 0,2 — 0,3 % массы. При КЧ масла более 0,1 мг КОН/г или наличии растворенного шлама обязательная предварительная регенерация масла по п. 10.2 Выполнять с периодичностью сокращенного анализа масла. Снижение концентрации присадки обусловлено ее расходом в процессе окислительного старения масла
Читайте также:  Какие есть способы для создания папок

Примечания: 1. Кислотное число масла можно определять также по ГОСТ 11362-76 (СТ СЭВ 5025-85) методом потенциометрического титрования. 2. Для трансформаторов 110 — 150 кВ мощностью 60 МВ · А и более, 220 — 500 кВ включительно всех мощностей, реакторов 500 кВ и выше, трансформаторов напряжением 110 — 150 кВ модностью менее 60 МВ · А СН блоков 300 МВт и выше, масло из которых контролируется хроматографическим методом, температура вспышки может не определяться.

В процессе эксплуатации трансформаторного масла выполняется сокращенный анализ масла, при необходимости выполняются различные испытания масла, входящие в объем полного анализа (помимо сокращенного анализа).

6.2. Объем эксплуатационного контроля включает в себя сокращенный или полный анализ масла.

6.2.1. Сокращенный анализ масла включает определение следующих показателей качества:

внешнего вида и цвета;

наличия механических примесей и свободной воды (визуальное);

реакции водной вытяжки (количественное определение содержания водорастворимых кислот выполняется при кислой реакции водной вытяжки).

Как правило, при нормальной эксплуатации, когда показатели качества эксплуатационного масла не приближаются к предельно допустимым значениям и не наблюдается ухудшения характеристик твердой изоляции, сокращенного анализа достаточно для контроля состояния масла и прогнозирования срока службы масла.

6.2.2. Полный анализ масла помимо испытаний, входящих в объем сокращенного анализа, включает определение следующих показателей:

тангенса угла диэлектрических потерь при 90 °С (при необходимости также и при других температурах, например при 20 и 70 °С);

количественного содержания механических примесей;

количественного содержания воды;

наличия растворенного шлама (потенциального осадка);

содержания антиокислительной присадки ионол;

стабильности против окисления.

Полный анализ эксплуатационного масла следует производить при приближении одного или нескольких показателей качества масла к предельно допустимому значению, а также при ухудшении характеристик твердой изоляции и (или) интенсивном старении масла, с целью определения причин данных процессов. Полный анализ позволяет более достоверно прогнозировать дальнейший срок службы эксплуатационного масла, выявлять причины загрязнения и правильно выбрать необходимые мероприятия по восстановлению его эксплуатационных свойств.

Кроме выше перечисленных показателей полный анализ может включать в себя определение таких показателей, как температура застывания, содержание серы, плотность, вязкость, поверхностное натяжение, показатель преломления ( ) и некоторых других. Определение этих показателей, в основном, необходимо для определения типа масла (например для импортных масел) и его химического состава с целью оценки эксплуатационных свойств.

Хроматографический анализ растворенных в масле газов может входить в объем полного анализа эксплуатационного масла. Данный метод является специальным методом, служащим для обнаружения повреждений и дефектов отдельных конструктивных узлов и всей твердой изоляции электрооборудования, но практически не информирующем о качестве и состоянии самого масла.

6.2.3. Различные испытания, входящие в объем эксплуатационного контроля трансформаторного масла, выполняются по стандартным методикам в соответствие с требованиями ГОСТ или ТУ, кроме определения количественного содержания водорастворимых кислот, шлама и антиокислительной присадки (см. табл. 5).

6.2.4. Цвет трансформаторного масла определяется при рассмотрении в проходящем свете и выражается числовой оценкой, основанной на сравнении с рядом цветовых стандартов. Внешний вид масла может быть мутным, с осадками и взвешенными частицами различных загрязнений. Цвет и внешний вид не являются решающими показателями для отбраковки масла, но дают полезную информацию о проведении необходимого объема испытаний масла.

6.2.5. Пробивное напряжение является важнейшим показателем качества масла, который характеризует способность жидкого диэлектрика выдерживать электростатическое напряжение без пробоя, т.е. определяет безаварийную работу всей системы изоляции оборудования. Определение значений пробивного напряжения по ГОСТ 6581-75 зависит от температуры испытуемого масла. Следует в протоколе указывать температуру масла при данном испытании и при прочих равных условиях результата следует считать сопоставимыми, если разность температур при определении Uпр не превышает 2 °С.

6.2.6. При приближении пробивного напряжения к предельно допустимому значению следует определить количественное влагосодержание масла. Влагосодержание также позволяет определить причину ухудшения характеристик твердой изоляции.

6.2.7. Кислотное число (КЧ) является основным показателем, характеризующим степень старения масла. Кроме КЧ степень старения характеризуют такие показатели как tg δ, влагосодержание и реакция водной вытяжки (содержание водорастворимых кислот).

6.2.8. Тангенс угла диэлектрических потерь является показателем качества масла чувствительным к присутствию в масле различных загрязнений [коллоидных (мелкодисперсных) образований, растворимых металлоорганических соединений (мыл) и различных продуктов старения масла и твердой изоляции]. Определение tg δ позволяет выявить незначительные изменения свойств масла даже при очень малой степени загрязнения, которые не определяются химическими методами контроля. Характер температурной зависимости tg δ позволяет определить тип загрязнения.

Читайте также:  Способы покорения саксов карлом великим

6.2.9. Газосодержание в основном характеризует эффективность действия пленочной защиты трансформаторов.

6.2.10. Снижение температуры вспышки трансформаторного масла указывает на наличие в оборудовании дефектов, приводящих к разложению масла и образованию воспламеняющихся летучих фракций.

Данные, полученные с помощью этого метода, в определенной мере дублируются данными, полученными хроматографическим анализом растворенных газов.

6.2.11. Определение наличия растворенного шлама является важным испытанием, так как позволяет выявить наличие растворенных в масле продуктов глубокого старения, способных выпадать в виде осадка на активной части электрооборудования. Продукты старения, выпадающие в осадок, оказывают наиболее отрицательное воздействие на твердую изоляцию.

6.2.12. Содержание ионола в эксплуатационном масле и стабильность против окисления являются наиболее точными показателями, характеризующими срок службы масла.

6.3. Периодичность проведения испытаний определяется классом оборудования и состоянием масла.

6.3.1. Периодичность определения значений показателей качества трансформаторного масла в процессе эксплуатации должна быть следующей:

сокращенный анализ масла должен выполняться не реже одного раза в три года для силовых трансформаторов мощностью более 630 кВ · А напряжением 6 кВ и выше, для измерительных трансформаторов напряжением 110 кВ и выше, негерметичных маслонаполненных вводов;

сокращенный анализ масла должен выполняться для герметичных маслонаполненных вводов при повышенных значениях tg δ изоляции или повышении давления во вводе выше нормы, для силовых трансформаторов при срабатывании газового реле на сигнал;

тангенс угла диэлектрических потерь эксплуатационного масла должен определяться не реже одного раза в три года для силовых и измерительных трансформаторов, негерметичных маслонаполненных вводов напряжением 220 кВ и выше;

тангенс угла диэлектрических потерь эксплуатационного масла должен определяться для герметичных маслонаполненных вводов при повышении давления во вводе выше нормы, а также для всех видов оборудования при значительном ухудшении характеристик твердой изоляции (tg δ и R60) или срабатывании газового реле трансформаторов на сигнал;

тангенс угла диэлектрических потерь и пробивное напряжение эксплуатационного масла должны определяться для силовых трансформаторов 500 кВ и выше через три месяца после включения в работу и в дальнейшем с периодичностью, указанной выше;

масло из трансформаторов мощностью менее 630 кВ · А включительно в процессе эксплуатации не проверяется;

масло из баковых масленных выключателей должно испытываться по пп. 1 и 2 (см. табл. 5) после капитального и внепланового ремонтов, а также в случае выполнения ими предельно допустимого числа коммутаций (отключения и включения) токов КЗ; масло из баковых выключателей до 35 кВ включительно и маломасленных выключателей всех классов напряжения после выполнения ими предельно допустимого числа коммутаций токов КЗ без ремонта может не испытываться, а заменяться на свежее; после текущего ремонта баковых выключателей испытание масла следует проводить по п. 1 (см. табл. 5);

масло в баке контактора устройства РПН, должно испытываться по пп. 1 и 7 (см. табл. 5) после определенного числа переключений, указанного в заводской инструкции по эксплуатации данного переключателя, но не реже одного раза в год, возможно качественное определение п. 7 по ГОСТ 1547-84, если отсутствует требование завода-изготовителя по количественному определению данного показателя; масло должно быть заменено на свежее в случае превышения предельно допустимого значения, указанного в пп. 1 и 7 или достижения предельного числа переключений, указанных в инструкции по эксплуатации данного устройства РПН;

масло из трансформаторов, оборудованных пленочной защитой должно испытываться по пп. 7 и 8 (см. табл. 5), азотной защитой по п. 7 с периодичностью сокращенного анализа.

6.3.2. Следует отметить, что учащенному контролю должны подвергаться масла из трансформаторов, работающих в перегруженном режиме, из оборудования, к которому предъявляется требование повышенной надежности работы, а также в том случае, если любой из показателей качества (см. табл. 5) эксплуатационного масла приближается к предельно допустимому значению.

6.4. Основная задача персонала при отборе проб — обеспечить тождественность пробы маслу, содержащемуся в оборудовании или в емкости.

6.4.1. Отбор проб свежих масел из транспортной емкости должен осуществляться в соответствии с требованиями ГОСТ 2517-80.

В случае несоблюдения процедуры отбора проб, указанной в ГОСТ 2517-80, претензия по качеству поступившего масла не будет обоснованной.

6.4.2. Небрежный отбор проб или загрязнение пробоотборной посуды приводит к ошибочным заключениям в отношении качества масла и к неоправданной потере времени, трудозатрат и расходов на транспортирование и контроль проб.

6.4.3. При отборе проб эксплуатационного масла следует соблюдать следующие основные правила:

отбор проб должен выполняться квалифицированным специалистом;

не следует выполнять отбор проб масла при плохой погоде (осадки, сильный ветер с пылью и другое) с высоким риском попадания загрязнений из окружающей среды в пробу масла, при необходимости срочного отбора проб в неблагоприятных условиях следует соблюдать дополнительные меры предосторожности;

использовать только специально подготовленную сухую и чистую посуду — стеклянные бутылки или бесшовные металлические банки, посуду из пластика можно использовать, если доказана возможность ее применения для этой цели;

слить достаточное количество масла (не менее двух объемов посуды) для удаления каких-либо загрязнений, которые могут находиться на пробоотборном патрубке;

ополоснуть пробоотборную посуду отбираемым маслом;

обеспечить наполнение каждого сосуда не менее 95 % его вместимости;

сразу после заполнения сосуд с пробой закупоривается пробкой;

после отбора пробы восстановить первоначальный вид пробоотборной точки;

проверить правильность и полноту маркировки этикетки;

хранить образцы в темном месте, если в качестве пробоотборника использовались прозрачные бутылки.

6.4.4. Отбор проб из оборудования должен производиться при обычном режиме работы оборудования или сразу после его отключения. Эту рекомендацию особенно важно выполнять, когда определяется влагосодержание или зависящие от него характеристики. В этих случаях должна быть измерена и зафиксирована температура масла во время отбора проб.

6.4.5. После доставки проб в лабораторию не рекомендуется сразу открывать бутыль, а необходимо подождать до тех пор, пока температура пробы не достигнет комнатной температуры.

Дата добавления: 2018-08-06 ; просмотров: 1029 ; Мы поможем в написании вашей работы!

Источник

Оцените статью
Разные способы