- Выбор методов контроля прочности бетона
- Классификация методов контроля прочности бетона
- Стоимость оборудования
- Правила контроля прочности бетона.
- Рассмотрим, чем вызвано такое категоричное требование норм по отношению к косвенным неразрушающим методам контроля.
- Исследование прочности бетона колодца различными методами
- Прочность бетона – способы определения
- Оценка прочности бетона различными методами
- Определение прочности бетона неразрушающими методами
- Определение прочности бетона с помощью ультразвука
- Разрушающие методы определения прочности бетона
- Определения прочности бетона своими руками
- Класс прочности всех марок бетонов
- Заключение
Выбор методов контроля прочности бетона
В последние годы популярность и доступность различных методов контроля прочности бетона и реализующих их приборов резко возросла. И несмотря на требования нормативных документов, резко ограничивающие возможность применения большинства методов для использования в ходе обследования конструкций зданий и сооружений, в том или ином объеме они применяются большинством организаций.
Необходимо уточнить, что в данной статье речь идет только о прочности бетона на сжатие и далее под «прочностью» понимается именно этот параметр бетона.
Рассмотрим следующие вопросы.
- Какие методы определения (оценки) прочности бетона применяются и какие наиболее доступны?
- Каковы параметры основных применяемых методов с точки зрения стоимости оборудования, производительности и погрешности измерений?
- Какие методы в реальных условиях объектов обследования, с учетом сложившейся на рынке ситуации, можно применять, соблюдая требования норм?
Классификация методов контроля прочности бетона
Исследования прочности бетона должны выполняться по требованиям ГОСТ 28570 [1], 22690 [2], 17624 [3], ГОСТ Р 53231 (вышел новый ГОСТ 18105)[4], СТО [5]. Условно все применяемые методы можно разделить на 3 группы, представленные на рис. 1.
Рисунок 1. Классификация методов контроля прочности бетона
Результаты, полученные методами первой группы, являются наиболее соответствующими истинному значению прочности материала по следующим причинам. Во-первых, измеряется именно искомый параметр – усилие, соответствующее разрушению при сжатии. Во-вторых, исследуется образец материала, изъятый из тела конструкции, а не только из поверхностного слоя. В-третьих, влияние на результат измерения внешних факторов: влажность, армирование, дефекты поверхностного слоя и прочих, – можно свести к минимуму.
Однако данный подход для рядовых объектов на практике применяется крайне редко. Это обусловлено тремя основными причинами: высокая стоимость оборудования, большая трудоемкость процесса измерения и, следовательно, его себестоимость и локальное повреждение конструкций, которое в большинстве случаев заказчик не приемлет.
Подсчитаем оценочную стоимость необходимого для первого вида измерений оборудования. Учитывая, что метод выбуривания кернов по сравнению с отбором проб выпиливанием характеризуется меньшей трудоемкостью и повреждением, наносимым конструкции, рассмотрим оборудование именно для него. Рассмотрим комплект оборудования, доступного на рынке, со средним качеством и минимальными необходимыми параметрами. В минимальный комплект можно включить: перфоратор (Bosch GBH 2-26), установка алмазного сверления для отбора кернов диаметром до 100 мм (Husqvarna DMS 160A), камнерезный станок (Diam SK-600) и пресс гидравлический (ПГМ-1000МГ4). Данные сведены в таблицу 1.
Трудозатраты для выполнения измерений будут состоять из выбуривания трех кернов (согласно п.СП13-102 [6] для определения прочности одного конструктивного элемента), доставки с объекта в лабораторию (в расчет взят 1 ч), торцовки на камнерезном станке и испытания на прессе с последующей обработкой результатов.
Для всех методов контроля, указанных на рис. 1, по требованиям ГОСТов [1,2,3] необходимо до выполнения измерений (отбора проб) определить наличие и расположение арматуры (для этого использовался измеритель защитного слоя бетона ИПА-МГ4.01). Данная операция, как правило, выполняется магнитным методом по ГОСТ 22904 [7]. Эта составляющая в затраты на приборное обеспечение и трудоемкость не включена.
Подсчитаем оценочную стоимость необходимого для второго вида измерений оборудования. Расчет выполнен для метода отрыва со скалыванием, так как в отличие от методов отрыва и скалывания ребра, данный метод в отечественной практике обследования нашел наибольшее применение.
Стоимость оборудования
В минимальный комплект можно включить перфоратор (Bosch GBH 2-26) и прибор для определения прочности бетона методом отрыва со скалыванием (ПОС-50МГ4). Трудозатраты для выполнения измерения методом отрыва со скалыванием будут состоять из бурения шпура, закладки анкера и проведения измерения. Количество единичных измерений для определения прочности бетона участка конструкции должно быть не менее трех [4,6]. Данные представлены в таблице 1.
Во всех косвенных неразрушающих методах контроля прочности для реализации достаточно наличия самого прибора контроля. Трудоемкость состоит непосредственно из измерений того или иного параметра (отскок, скорость ультразвука, диаметр отпечатка и пр.) после выполнения надлежащего количества измерений.
Таблица 1. Сводные данные по методам измерения
№ по рис. 1 | Метод измерения | Стоимость оборудования, руб. | Трудоемкость*, чел/ч | Стоимость испытания**, руб. |
1.2 | Испытание кернов на прессе | 490000 | 4 | 12000 |
2.2 | Отрыв со скалыванием | 72000 | 1 | 5000 |
3.1 | Ультразвуковой метод | 66000 | 0,1 | 1500 |
3.2 | Метод упругого отскока | 100000 | 0,2 | 2500 |
3.3 | Метод ударного импульса | 56000 | 0,2 | 1500 |
3.4 | Метод пластической деформации | 4000 | 0,5 | 2000 |
*Трудоемкость определена по всем операциям с момента начала работ на объекте, учитывая необходимость обработки поверхности и прочие вспомогательные операции, до получения первичных данных о прочности, без работ по оформлению результатов.
**Стоимость указана по результатам опроса специализированных организаций с учетом минимально необходимого по требованиям нормативных документов количества измерений и без учета дополнительных затрат.
Измерение прочности методом пластической деформации характеризуется большей трудоемкостью, так как помимо нанесения отпечатков на поверхность бетона конструкции необходимо производить измерение их диаметров и дальнейший расчет их отношения (при использовании молотка Кашкарова).
Исходя из данных, представленных в таблице 1, можно сделать вывод о том, что приборы третьей группы характеризуются очевидными преимуществами. Они обладают наименьшей трудоемкостью и, соответственно, стоимостью единичного испытания. Величина инвестиций в приобретение оборудования также минимальна по сравнению с методом 1 группы. И сопоставима со стоимостью оборудования 2 группы. Помимо этого все косвенные методы контроля являются полностью «неразрушающими» и не наносят повреждений бетону конструкций при измерениях.
Именно эти факторы являются основной причиной большой популярности методов группы 3 у различных организаций, занимающихся обследованием и испытаниями бетона. Особенно это относится к фирмам, стремящимся минимизировать расходы на оборудование, либо «молодым» организациям, а также к организациям, основной целью которых является не качество выполненной работы.
Правила контроля прочности бетона.
Согласно п. 3.14 ГОСТ 22690 [2], «для определения прочности бетона в конструкциях предварительно устанавливают градуировочную зависимость между прочностью бетона и косвенной характеристикой прочности (в виде графика, таблицы или формулы)». Применение методов упругого отскока, ударного импульса или пластической деформации при обследовании конструкций, бетон которых обладает параметрами, отличающимися от бетона, на котором построена градуировочная зависимость (то есть всегда), возможно только с уточнением данной зависимости. Уточнение зависимости подразумевает испытание бетона методом группы 2 или 1.
Согласно п. 3.16. ГОСТ Р 53231 (вышел новый ГОСТ 18105)[4], использование всех косвенных методов контроля (группа 3) возможно только с построением градуировочной зависимости.
Согласно п. 8.3.1 и Приложению Б СП 13-102 [6], определение прочности бетона выполняется неразрушающими методами в соответствии с ГОСТ 22690 [2], и без построения градуировочной зависимости может быть выполнено только методами отрыва со скалыванием, отрыва, скалывания ребра и по испытанию отобранных образцов.
Иными словами, применять все методы контроля прочности, входящие в группу 3 (рис. 1), без построения градуировочной зависимости НЕЛЬЗЯ, а построение зависимости ведет к неизбежному использованию методов группы 1 или 2. По результатам анализа отчетов сторонних организаций, а также общения с коллегами из различных регионов России можно утверждать, что в отечественной практике обследования указанными нормами пренебрегает большинство организаций. Почему так происходит, описано выше.
Рассмотрим, чем вызвано такое категоричное требование норм по отношению к косвенным неразрушающим методам контроля.
Во-первых, это большая неопределенность (погрешность) результатов измерения фиксируемого параметра. Помимо наличия приборной составляющей погрешности (износ пружины, низкий заряд аккумуляторов и т.п.), которая вносит определенный вклад в результирующую погрешность, превалирующую роль играют многочисленные внешние факторы [8]. К ним относятся:
- качество обработки поверхности бетона;
- наличие дефектов (скрытых и явных) в зоне измерения (микротрещины, поры, каверны,расслоения и т.п.);
- включения крупного заполнителя;
- наличие арматуры в зоне измерения;
- повреждение поверхностного слоя (размораживание, промасливание, увлажнение, карбонизацияи другие виды коррозии);
- сила прижатия датчика (для ультразвукового метода);
- другие факторы.
Все перечисленные факторы в определенном сочетании имеют место всегда, а минимизация их влияния либо невозможна, либо снижает производительность измерений в разы (например, предварительная шлифовка поверхности бетона).
Во-вторых, даже при сведении к минимуму влияния внешних факторов путем тщательной подготовки и проведения исследований, а также статистической обработки результатов измерений и отбраковки их части, полученный результат не может быть использован без частной градуировочной зависимости для конкретного исследуемого бетона.
Установление градуировочной зависимости, например, для ультразвукового метода, по требованиям п. 3.4 ГОСТ 17624 [3] подразумевает испытание не менее 30 образцов кубов (15 серий по 2 куба в каждой). На большинстве объектов среднего масштаба, а также при выборочном обследовании бетонных конструкций выполнение такого количества прямых испытаний сводит к нулю необходимость применения неразрушающих методов вообще. Помимо этого, получить согласование заказчика на повреждение конструкций (неизбежное при испытаниях) в таком объеме на эксплуатируемых объектах гражданского назначения редко представляется возможным.
Необходимо отметить, что на практике, даже при соблюдении минимального количества образцов для построения градуировочной зависимости, найденная зависимость может оказаться не удовлетворяющей требованиям норм по статистическим параметрам оценки (допустимое среднеквадратическое отклонение, коэффициент вариации). Таким образом, выполненная исследовательская работа может оказаться бесполезной.
Тем не менее, применять косвенные методы неразрушающего контроля можно. Это целесообразно в следующих случаях:
- когда нет необходимости определять прочность бетона (например, для расчета), а необходимо только оценить ее значение и использовать как один из ряда факторов, характеризующих техническое состояние конструкции (однородность, сплошность и др.), например при обследовании фундаментов по требованиям п. 7.16 ТСН 50-302 [9] и п.5.2.15 ГОСТ Р 53778 [10];
- когда необходимо качественно выявить зоны неоднородности прочности бетона для дальнейшего применения методов групп 1 и 2 в этих зонах;
- когда есть возможность и необходимость выполнения комплексных работ и построения частной градуировочной зависимости согласно требованиям ГОСТ.
Учитывая, что методов третьей группы несколько, рассмотрим, какой из них оптимален. Параметры трудоемкости и стоимости имеются в таблице 1. Ниже рассмотрим третий немаловажный фактор – погрешность измерения.
Исследование прочности бетона колодца различными методами
На одном из обследованных в 2011 г объектов автором было проведено исследование, в ходе которого осуществлен контроль прочности бетона тремя косвенными неразрушающими методами с последующим испытанием отобранных образцов. Метод пластической деформации не применялся ввиду его низкой производительности.
Объект представляет собой колодец, выполненный из монолитного железобетона, радиусом 12 м и глубиной 8 м. Бетонирование стен колодца велось захватками, разделяющими колодец по высоте на 8 ярусов. Результаты измерений, выполненных различными методами, представлены в таблице 2. Для измерений использованы следующие приборы: ультразвуковой метод – УКС-МГ4 («СКБ Стройприбор») (рис. 2); метод упругого отскока – Original Schmidt N (Proseq) (рис. 3); метод ударного импульса – ИПС МГ4.03 («СКБ Стройприбор»).
Источник
Прочность бетона – способы определения
Прочность бетона на сжатие, является важнейшей технической характеристикой, регламентируемой действующими нормативными документами: ГОСТ и СНиП. В соответствии с практическими исследованиями 80-85% марочной прочности бетон приобретает на 28 сутки после затворения водой.
Конечно, при этом температура окружающего воздуха должна находиться в пределах 20-25 градусов Цельсия. Максимально же возможная прочность бетонной конструкции достигается через 3-4 года после заливки.
Оценка прочности бетона различными методами
Так как прочность бетона является самой важной характеристикой, от которой зависит прочность сооружения, конструкторами и технологами разработаны и активно применяются следующие варианты испытаний бетона на прочность:
- Неразрушающие механические методы контроля. Основаны на опосредственной оценке технической характеристики, полученной методами: упругого отскока, удара, и отрыва со скалыванием.
- Определение прочности бетона ультразвуковым методом. В этом случае используется специальная ультразвуковая установка, которая «просвечивает» проверяемую конструкцию и определяет прочность бетона в зависимости от скорости распространения ультразвуковых волн.
- Метод разрушающего контроля прочности. Согласно существующим СНиПам разрушающий контроль является обязательным при приемке здания или сооружения в эксплуатацию.
- Самостоятельный метод определения прочности бетона с помощью подручных материалов и инструментов: молотка, зубила и штангенциркуля.
Перечисленные способы имеют различную степень точности, находящуюся в пределах допускаемой погрешности.
Определение прочности бетона неразрушающими методами
- Определение прочности с помощью молотка Физделя. При ударе рабочей частью молотка Физделя на поверхности бетона очищенной от посторонних материалов образуется отпечаток в виде лунки определенного диаметра. Величина диаметра, измеренная штангенциркулем, характеризует прочность бетона. Для достоверности результатов производится 12-15 ударов. Для расчета прочности принимается средний диаметр лунки.
- Определение прочности с помощью молотка Кашкарова. Удар молотком Кашкарова оставляет на поверхности бетона два отпечатка. Один отпечаток остается на исследуемом объекте, второй отпечаток остается на эталоне (бетонном стержне известной прочности). В зависимости от соотношений диаметров отпечатков определяется прочность проверяемого объекта.
- Прочность бетона неразрушающими методами определяемая с помощью: пистолета ЦНИИСКа, молотка Шмидта и склерометра. Указанные методы основаны на принципе упругого отскока рабочего органа от испытываемого объекта. Величина прочности бетона оценивается по шкале прибора, на которой фиксируются полученные данные.
- Отрыв со скалыванием. Для проведения испытаний выбирается участок поверхности в теле, которого нет арматурного пояса. Для проверки прочности используются специальные анкерные устройства, внедряемые в толщу бетона. Оценка прочности производится по шкале анкерного устройства.
Определение прочности бетона с помощью ультразвука
Технология использует связь, которая существует между скоростью распространения ультразвуковых импульсов и прочностью бетонной конструкции. Для реализации метода необходимо специальное оборудование, состоящее из генератора ультразвуковых волн, блока управления и датчиков.
Кроме прочности бетона, приборы ультразвукового исследования позволяют определять дефекты, однородность, модуль упругости и плотности толщи исследуемого объекта.
Разрушающие методы определения прочности бетона
В соответствии с требованиями действующего СП 63.13330.2012 г., проверка конструкций разрушающими методами являются обязательными, застройщикам остается выбрать приемлемый способ определения прочности бетона по контрольным образцам из следующего списка:
- Контроль прочности, осуществляемый специальными прессами, разрушающими контрольные образцы, залитые в специальные формы. Аналогичным способом осуществляется проверка отпускной прочности бетона ГОСТ 18105-2010. «Бетоны. Правила контроля и оценки прочности».
- Контроль прочности бетона разрушением образцов выпиленных или высверленных из толщи проверяемой конструкции.
- Контроль прочности методом разрушения образцов изготовленных непосредственно на строительной площадке. В связи с тем, что время и условия набора прочности образцами и время и условия набора прочности залитой конструкцией существенно различаются, данный метод считается относительно достоверным.
Определения прочности бетона своими руками
Более-менее достоверные сведения о прочности залитого бетона можно получить без использования специального оборудования. Для самостоятельных испытаний потребуется следующий инструмент:
- Слесарный молоток массой ударной части 400-600 граммов.
- Штангенциркуль с глубиномером.
- Слесарное зубило средней величины.
При этом показатель прочности бетона – размер следа и глубина проникновения зубила после нанесения удара молотком средней силы.
- Если след от зубила едва виден, прочность бетона соответствует классу В25.
- Более глубокая и хорошо видная отметина идентифицирует бетон класса В15-В25.
- Проникновение зубила в тело материала более чем на 0,5 мм говорит о том, что перед нами бетон класса В10,
- Проникновение зубила в толщу бетона более чем на 10 мм идентифицирует бетон класса прочности В5.
Несмотря на то, что самостоятельный метод определения прочности бетона весьма простой и очень экономичный, прочность материала особо ответственных конструкций лучше всего определять «научными» способами привлекая соответствующих специалистов оснащенных соответствующим оборудованием.
Класс прочности всех марок бетонов
Заключение
Показатели марки и класса бетонных материалов – это самые важные показатели их сопротивления сжатию и осевой растяжке. В отличии от качеств относительно стойкости к низким температурам, влаге, именно они учитываются в первую очередь при покупке материалов.
Источник