Способы контроля геометрических размеров при дефектации деталей

Методы контроля, применяемые при дефектации деталей

Средства и методы контроля. Со­стояние деталей и сопряжений можно определить осмотром, проверкой на ощупь, при помощи мерительных ин­струментов и другими методами.

В процессе осмотра выявляют раз­рушение детали (трещины, выкрашивание поверхностей, изломы: и т. п.), наличие отложений (накипь, нагар и т. п.), течь воды, масла, топлива: Проверкой на ощупь определяют износ и смятие ниток резьбы на деталях в ре­зультате предварительной затяжки, эластичность сальников, наличие задиров, царапин и др. Отклонения со­пряжений от заданного зазора или натяга деталей от заданного разме­ра, от плоскостности, формы, профи­ля и т. д. определяют при помощи из­мерительных инструментов.

Выбор средств контроля должен основываться на обеспечении задан­ных показателей процесса контроля и анализа затрат на реализацию кон­троля при заданном качестве изде­лия. При выборе средств контроля следует использовать эффективные для конкретных условий средства контроля, регламентированные госу­дарственными, отраслевыми стан­дартами и стандартами предприя­тий.

Выбор средств контроля включает следующие этапы:

анализ характеристик объекта контроля и показателей процесса контроля;

определение предварительного со­става средств контроля;

определение окончательного со­става средств контроля, их экономи­ческого, обоснования, составление технологической документации.

В зависимости от производствен­ной программы, стабильности изме­ряемых параметров могут быть ис­пользованы универсальные, механи­зированные или автоматические средства контроля. При ремонте наи­большее распространение получили универсальные измерительные при­боры и инструменты. По принципу действия они могут быть разделены на следующие виды.

1. Механические приборы — ли­нейки, штангенциркули, пружинные приборы, микрометрические и т. п. Как правило, механические приборы и инструменты отличаются простотой, высокой надежностью измере­ний, однако имеют сравнительно не­высокую точность и производитель­ность контроля. При измерениях не­обходимо соблюдать принцип Аббе (компараторный принцип), согласно которому необходимо, чтобы на одной прямой линии располагались ось шкалы прибора и контролируемый размер проверяемой детали, т. е. ли­ния измерения должна являться про­должением линии шкалы. Если этот принцип не выдерживается, то пере­кос и непараллельность направляю­щих измерительного прибора вызы­вают значительные погрешности из­мерения.

2. Оптические приборы — окуляр­ные микрометры, измерительные микроскопы, коллимационные и пру­жинно-оптические приборы, проекто­ры, интерференционные средства и т. д. При помощи оптических приборов до­стигается наивысшая точность изме­рений. Однако приборы этого вида сложны, их настройка и измерение требуют больших затрат времени, они дороги и часто не обладают высо­кой надежностью и долговечностью.

3. Пневматические приборы — длинномеры. Этот вид приборов ис­пользуется в основном для измерений наружных и внутренних размеров, от­клонений формы поверхностей (в том числе внутренних), конусов и т. п. Пневматические приборы имеют вы­сокую точность и быстродействие. Ряд измерительных задач, например точные измерения в отверстиях мало­го диаметра, решается только прибо­рами пневматического типа. Однако приборы этого вида чаще всего требу­ют индивидуальной тарировки шка­лы с использованием эталонов.

4. Электрические приборы. Они получают все большее распростране­ние в автоматической контрольно-из­мерительной аппаратуре. Перспек­тивность приборов обусловлена, их быстродействием, возможностью до­кументирования результатов изме­рений, удобством управления.

Основным элементом электриче­ских измерительных приборов является измерительный преобразова­тель (датчик), воспринимающий из­меряемую величину и вырабатываю­щий сигнал измерительной информа­ции в форме, удобной для передачи, преобразования и интерпретации. Преобразователи классифицируют на электроконтактные (рис. 2.1), электроконтактные шкальные голо­вки, пневмоэлектроконтактные, фо­тоэлектрические, индуктивные, ем­костные, радиоизотопные, механотронные.

Виды и методы неразрушающего контроля.Визуальный контроль по­зволяет определить видимые нару­шения целостности детали. Визуаль­но-оптический контроль обладает ря­дом очевидных преимуществ перед визуальным контролем. Гибкая волоконная оптика с манипулятором позволяет осмотреть значительно большие зоны, недоступные для от­крытого обзора. Однако многие опас­ные дефекты, проявляющиеся в про­цессе эксплуатации, визуально-опти­ческими методами в большинстве своем не обнаруживаются. К таким дефектам относятся в первую оче­редь усталостные трещины неболь­ших размеров, коррозионные пора­жения, структурные превращения материала, связанные с процессами естественного и искусственного ста­рения и т. д.

Читайте также:  Способ приготовление икры с баклажанами

В этих случаях используются физи­ческие методы неразрушающего контроля (НК). В настоящее время изве­стны следующие основные виды не­разрушающего контроля: акустиче­ский, магнитный, радиационный, ка­пиллярный и вихретоковый. Их крат­кая характеристика приведена в табл. 2.3.

Каждый из видов неразрушающего контроля имеет несколько разновид­ностей. Так, среди акустических ме­тодов можно выделить группу ульт­развуковых методов, импедансный, свободных колебаний, велосимметрический и т. д. Капиллярный метод подразделяется на цветной и люми­несцентный, радиационный метод — на рентгено — и гамма-методы.

Общей особенностью методов не­разрушающего контроля является то, что непосредственно измеряемы­ми этими методами являются физи­ческие параметры такие, как элект­ропроводность, поглощение рентге­новских лучей, характер отражения и поглощения рентгеновских лучей, ха­рактер отражения и поглощения уль­тразвуковых колебаний в исследуе­мых изделиях и т. д. По изменению значений этих параметров в ряде слу­чаев можно судить об изменении свойств материала, имеющих весьма важное значение для эксплуатацион­ной надежности изделий. Так, резкое изменение магнитного потока на по­верхности намагниченной стальной детали свидетельствует о наличии в данном месте трещины; появление дополнительного отражения ультра­звуковых колебаний при прозвучивании детали сигнализирует о наруше­нии однородности материала(напри­мер, расслоений, трещин и др.); по из­менению электропроводности мате­риала часто можно судить и об изме­нении его прочностных свойств и т. п. Не во всех случаях можно дать точ­ную количественную оценку обнару­женного дефекта, так как связь меж­ду физическими параметрами и па­раметрами, подлежащими определе­нию в процессе контроля (например, размер трещины, степень понижения прочностных свойств и др.), как пра­вило, не бывает однозначной, а имеет статистический характер с различ­ной степенью корреляции. Поэтому физические методы неразрушающе­го контроля в большинстве случаев являются скорее качественными и реже — количественными.

Дата добавления: 2016-07-05 ; просмотров: 7977 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Способы контроля геометрических размеров при дефектации деталей

Дефектация необходима для выявления у деталей эксплуатационных дефектов, возникающих в результате изнашивания, коррозии, усталости материала, а также из-за нарушений режимов эксплуатации.

В результате трения и изнашивания деталей — изменяются их геометрические параметры, шероховатость рабочих поверхностей и физико-химические свойства поверхностных слоев материала, а также возникают и накапливаются усталостные повреждения.

Под изменением геометрических параметров деталей понимают изменение их размеров, формы и взаимного расположения поверхностей. К нарушениям формы относят: неплоскостность, непрямолинейность, овальность, конусность и др., а к отклонениям взаимного расположения поверхностей — непараллельность плоскостей и осей вращения поверхностей, торцовое и радиальное биение, несоосность и т.д.

Усталостные повреждения нарушают сплошность материала, способствуют возникновению микро- и макротрещин, выкрашиванию металла и излому деталей.

Изменения физико-химических свойств материала приводит к нарушению структуры материала, а также уменьшению или увеличению твердости, прочности, коэрцитивной силы ферромагнитных материалов и др.

Нарушение режимов эксплуатации и правил могут приводить к схватыванию трущихся поверхностей, короблению деталей в результате перегрева или деформации под действием механической нагрузки, возникновению трещин, облому фланцев креплений и др.

В процессе ремонта машины проводится 3-х ступенчатая дефектация, завершающаяся оформлением окончательной ведомости дефектов.

Предварительная дефектация — операция перед остановкой оборудования на ремонт.

При разборке проводится поузловая, а затем и подетальная дефектация.

Цель предварительной — выяснение наиболее вероятных мест нарушения правильности сопряжения сборочных единиц и деталей. При поузловой дефектации выявляются отклонения узлов от заданного взаимоположения.

При подетальной дефектации определяется возможность повторного использования деталей и характер требуемого ремонта.

Степень годности деталей к повторному использованию или восстановлению устанавливают по технологическим картам на дефектацию. В них указаны: краткая техническая характеристика детали (материал, вид термической обработки, твердость, нормальные размеры, отклонение формы и взаимного расположения поверхностей), возможные дефекты и способы их устранения, методы контроля, допустимые без ремонта и предельные размеры. Оценку проводят сравниванием фактических геометрических параметров деталей и других технологических характеристик с допустимыми значениями.

Читайте также:  Внеурочная деятельность как способ формирования ууд

Нормальными называют размеры и др. технические характеристики деталей, соответствующие рабочим чертежам.

Допустимыми называют размеры и другие технические характеристики детали, при которых она может быть поставлена на машину без ремонта и будет удовлетворительно работать в течение предусмотренного межремонтного периода.

Предельными называют выбраковочные размеры и другие характеристики детали.

Часть деталей с размерами, превышающими допустимые для ремонта, могут быть годными в соединении с новыми (запасными частями) или восстановленными. Поэтому в процессе контроля их сортируют на три группы:

1) детали, имеющие износ в пределах допуска и годные для повторного использования без ремонта;

2) детали с износом выше допуска, но пригодные к ремонту;

3) детали с износом выше допуска и непригодные к ремонту.

Детали первой группы рекомендуется маркировать белой краской, второй — зелёной или жёлтой, а третьей — красной.

У деталей обычно контролируются только те параметры, которые могут изменяться в процессе эксплуатации машины. Многие из них имеют несколько дефектов, каждый из которых требует проверки. Для уменьшения трудоемкости дефектации необходимо придерживаться той последовательности контроля, которая указана в технологических картах, где вначале приведены наиболее часто встречающиеся дефекты.

Методы контроля геометрических параметров деталей.

При дефектации используют следующие методы измерения: абсолютный, когда прибор показывает абсолютное значение измеряемого параметра, и относительный – отклонение измеряемого параметра от установленного размера. Искомое значение может отсчитываться непосредственно по прибору (прямой метод) и по результатам измерения другого параметра (косвенный метод). Например, в ротаметре, чтобы установить размер отверстия, надо применять зависимость между зазором и расходом воздуха.

По числу измеряемых параметров методы контроля делятся на дифференциальные и комплексные. При первом измеряют значение каждого параметра, а при втором – суммарную погрешность отдельных геометрических размеров изделия. (Например, определение степени годности подшипников качения по радиальному зазору). Изменение последнего связано с износом беговых дорожек внутреннего и наружного колец, а также элементов качения (шариков, роликов).

Если измерительный элемент прибора непосредственно соприкасается с контролируемой поверхностью, то такой метод называют контактным, а если нет – бесконтактным.

Наиболее часто применяют следующие средства измерения: калибры, универсальный измерительный инструмент и специальные приборы.

Калибры – это бесшкальные измерительные инструменты для контроля отклонений размеров, формы, и взаимного расположения поверхностей деталей без определенного численного значения измеряемого параметра. Наиболее часто используют предельные калибры, ограничивающие предельные размеры деталей и распределяющих их на три группы: годные, подлежащие восстановлению и негодные.

Универсальные инструменты и приборы позволяют находить значение контролируемого параметра в определенном интервале его значений. Обычно применяют следующие измерительные средства: штриховые инструменты с нониусом (штангенциркуль, штангенглубиномер, штангенрейсмус, штангензубомер), микрометрические (микрометры, микронометрический нутрометр, глубиномер), механические приборы (миниметр, индикатор часового типа, рычажная скоба, рычажный микрометр), пневматические приборы давления (манометры) и расхода (ротаметры).

Универсальный измерительный инструмент служит для определения износа резьб (резьбовые микрометры, резьбовые микрометрические нутрометры и др.), а также зубчатых и червячных колес (шагомеры, биениемеры).

При выборе средств измерения необходимо учитывать его метрологические характеристики (цена и интервал деления шкалы, точность отсчета, погрешность и пределы измерения), а также точность изготовления измеряемого элемента детали (поле допуска).

Существуют номограммы для выбора прибора в зависимости от параметров измеряемого элемента детали и значений допуска на изготовление.

Дефекты и методы дефектоскопии.

Методы определения состояния деталей.

Люминесцентные — если наносимая жидкость содержит вещества способные флуоресцировать при облучении ультрафиолетовым светом. Если в жидкости есть красители, видимые при дневном свете — то они называются цветными.

Читайте также:  Деревянный плинтус способы крепления

Диффузионный метод более чувствителен, чем сорбционный.

Цветная дефектоскопия: дефекты до 0.01мм и глубиной 0.03-0.04мм

Проникающий раствор: 80% керосина +20% скипидара + 15г красителя судан III на 1л раствора.

Далее пропитка 5% раствором кальцинированной соды и протирка.

Абсорбирующее покрытие: 0.6л H2O,

0.4л этилового спирта,

Результат ? красный цвет в местах дефектов.

Источник

Методы контроля при дефектации деталей

Внешний осмотр – осмотр при котором выявляются трещины, поломки, риски и др. крупные дефекты. При контроле деталей их важно проверить на наличие скрытых дефектов. Этот контроль особенно необходим для деталей от которых зависит безопасность авт. Внутренние и незаметные невооруженным глазом дефекты, определяют методом физической дефектоскопии. В авторемонтном предприятии применяют методы: опрессовки, красок, люминесцентный, намагничивания, ультразвуковой

Метод опрессовки применяют для обнаружения скрытых дефектов в полых деталях. Опрессовку проводят водой (гидравлический метод), воздухом (пневматический метод). Гидравлический метод применяют для выявления трещин в корпусных деталях. Пневматический для радиаторов, баков, трубопроводов.

Метод красок основан на свойстве жидких красок к взаимной диффузии. При этом методе на контролируемую поверхность деталь предварительно обезжиренную наносят красную краску, разведенную керосином. Затем красную краску смывают и нанося белую. Через несколько минут на белой краске выступает, увеличенный по ширине, красный след трещины.

Люминесцентный метод основан на свойстве некоторых веществ светится при облучении ультрафиолетом. Деталь погружают в ванну с флюоресцирующей жидкостью, затем промывают водой, просушивают и припудривают порошком. При облучении детали ультрафиолетом порошок, пропитанный флюоресцирующей жидкостью, будет ярко светится, обнаруживая границы трещины.

Метод магнитной дефектоскопии нашел наибольшее распространение при контроле скрытых дефектов автомобильных деталей, изготовленных иж ферромагнитных материалов (сталь, чугун). Деталь намагничивают. Магнитные линии проходят через деталь, встречают дефект, огибают его как элемент с малой магнитной проницаемостью. При этом над дефектом образуется поле рассеивания магнитных линий, а на краях трещины магнитные полосы. Для обнаружения неоднородности магнитного поля, деталь поливают суспензией, в которой находится мельчайший магнитный порошок. При этом магнитный порошок будет притягиваться краями трещины и четко обрисует ее границы. Для обнаружения продольных дефектов на детали используют циркулярное намагничивание, поперечных – продольное. При комбинированном намагничивании выявляются продольные и поперечные трещины.

Ультразвуковой метод основан на свойстве ультразвука проходить через металл и отражаться от границы раздела двух сред, в т.ч. от дефекта. В зависимости от способа приема сигнала от дефекта различают два метода ультразвуковой дефектоскопии: 1) метод просвечивания 2) импульсивный метод. Метод просвечивания основан на появлении звуковой тени за дефектом. В этом случае излучатель звуковых колебаний находиться по одну сторону от деталь, а приемник по другую. Этот метод можно применять при контроле деталей не большой ширины, кроме того необходим двухсторонний доступ к контролируемой детали. Этих недостатков не имеет импульсивный метод, получивший более широкое распространение. Суть метода: при контроле детали к ее поверхность подводят излучатель ультразвуковых колебаний, питаемый от генератора. Если дефектов в детали нет, то звуковые колебания, отразившись от противоположной стороны детали, возвратятся обратно и возбудят электрический сигнал в приемнике. При этом на экране электролучевой трубки будут видны два всплеска. С лева излученный импульс и с права отраженный от противоположной стенки детали. Если в детали есть дефект, то звук колебаний отразится от него и на экране трубки появится промежуточный всплеск.

Методы контроля погрешностей взаимного расположения рабочих поверхностей деталей индивидуальны и завися от формы детали. При этом используется различный измерительный инструмент (штангельциркуль, индикаторы, нутромеры и т.д.)

Источник

Оцените статью
Разные способы